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Notations

• sets of numbers

– N - set of natural numbers

– Z - set of integers

– Z+ - set of nonnegative integers

– Q - set of rational numbers

– R - set of real numbers

– R+ - set of nonnegative real numbers

– R++ - set of positive real numbers

– C - set of complex numbers

• sequences ⟨xi⟩ and the like

– finite ⟨xi⟩ni=1, infinite ⟨xi⟩∞i=1 - use ⟨xi⟩ whenever unambiguously understood

– similarly for other operations, e.g.,
∑

xi,
∏

xi, ∪Ai, ∩Ai,×Ai

– similarly for integrals, e.g.,
∫
f for

∫∞
−∞ f

• sets

– Ã - complement of A
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– A ∼ B - A ∩ B̃

– A∆B - (A ∩ B̃) ∪ (Ã ∩ B)

– P(A) - set of all subsets of A

• sets in metric vector spaces

– A - closure of set A

– A◦ - interior of set A

– relintA - relative interior of set A

– bdA - boundary of set A

• set algebra

– σ(A) - σ-algebra generated by A, i.e., smallest σ-algebra containing A
• norms in Rn

– ∥x∥p (p ≥ 1) - p-norm of x ∈ Rn, i.e., (|x1|p + · · · + |xn|p)1/p
– e.g., ∥x∥2 - Euclidean norm

• matrices and vectors

– ai - i-th entry of vector a

– Aij - entry of matrix A at position (i, j), i.e., entry in i-th row and j-th column

– Tr(A) - trace of A ∈ Rn×n, i.e., A1,1 + · · · + An,n
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• symmetric, positive definite, and positive semi-definite matrices

– Sn ⊂ Rn×n - set of symmetric matrices

– Sn
+ ⊂ Sn - set of positive semi-definite matrices; A ⪰ 0 ⇔ A ∈ Sn

+

– Sn
++ ⊂ Sn - set of positive definite matrices; A ≻ 0 ⇔ A ∈ Sn

++

• sometimes, use Python script-like notations (with serious abuse of mathematical

notations)

– use f : R → R as if it were f : Rn → Rn, e.g.,

exp(x) = (exp(x1), . . . , exp(xn)) for x ∈ Rn

and

log(x) = (log(x1), . . . , log(xn)) for x ∈ Rn
++

which corresponds to Python code numpy.exp(x) or numpy.log(x) where x is

instance of numpy.ndarray, i.e., numpy array

– use
∑

x to mean 1Tx for x ∈ Rn, i.e.∑
x = x1 + · · · + xn

which corresponds to Python code x.sum() where x is numpy array
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– use x/y for x, y ∈ Rn to mean[
x1/y1 · · · xn/yn

]T
which corresponds to Python code x / y where x and y are 1-d numpy arrays

– use X/Y for X,Y ∈ Rm×n to mean
X1,1/Y1,1 X1,2/Y1,2 · · · X1,n/Y1,n

X2,1/Y2,1 X2,2/Y2,2 · · · X2,n/Y2,n
... ... . . . ...

Xm,1/Ym,1 Xm,2/Ym,2 · · · Xm,n/Ym,n


which corresponds to Python code X / Y where X and Y are 2-d numpy arrays
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Some definitions

Definition 1. [infinitely often - i.o.] statement Pn, said to happen infinitely often or

i.o. if

(∀N ∈ N) (∃n > N) (Pn)

Definition 2. [almost everywhere - a.e.] statement P (x), said to happen almost

everywhere or a.e. or almost surely or a.s. (depending on context) associated with

measure space (X,B, µ) if

µ{x|P (x)} = 1

or equivalently

µ{x| ∼ P (x)} = 0
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Some conventions

• (for some subjects) use following conventions

– 0 · ∞ = ∞ · 0 = 0

– (∀x ∈ R++)(x · ∞ = ∞ · x = ∞)

– ∞ · ∞ = ∞

Searching for Universal Truths 8



Convex Optimization



Convex Sets



Sunghee Yun July 14, 2025

Lines and line segmenets

Definition 3. [lines] for some x, y ∈ Rn

{θx + (1 − θ)y|θ ∈ R}

called line going through x and y

Definition 4. [line segmenets] for some x, y ∈ Rn

{θx + (1 − θ)y|0 ≤ θ ≤ 1 ∈ R}

called line segment connecting x and y

Searching for Universal Truths - Convex Optimization - Convex Sets 11



Sunghee Yun July 14, 2025

Affine sets

Definition 5. [affine sets] set, C ⊂ Rn, every line going through any two points in

which is contained in C, i.e.

(∀x, y ∈ C) ({θx + (1 − θ)y|θ ∈ R} ⊂ C)

called affine set

Definition 6. [affine hulls] for set, C ⊂ Rn, intersection of all affine sets containing C,

called affine hull of C, denoted by aff C, which is equal to set of all affine combinations

of points in C, i.e.⋃
n∈N

{θ1x1 + · · · + θnxn|x1, . . . , xn ∈ C, θ1 + · · · + θn = 1}

Definition 7. [affine dimension] for C ⊂ Rn, dimension of aff C, called affine

dimension

Searching for Universal Truths - Convex Optimization - Convex Sets 12
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Relative interiors and boundaries

Definition 8. [relative interiors of sets] for C ⊂ Rn,⋃
O:open,O∩aff C⊂C

O ∩ aff C

or equivalently

{x|(∃ϵ > 0)(∀y ∈ aff C, ∥y − x∥ < ϵ)(y ∈ C)}

is called relative interior of C or interior relative to C, denoted by relintC

Definition 9. [relative boundaries of sets] for C ⊂ Rn, C ∼ relintC, called

relative boundary of C

Searching for Universal Truths - Convex Optimization - Convex Sets 13
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Convex sets

Definition 10. [convex sets] set, C ⊂ Rn, every line segment connecting any two

points in which is contained in C, i.e.

(∀x, y ∈ C) (∀0 ≤ θ ≤ 1) (θx + (1 − θ)y ∈ C)

called convex set

Definition 11. [convex hulls] for set, C ⊂ Rn, intersection of all convex sets containing

C, called convex hull of C, denoted by ConvC, which is equal to set of all convex

combinations of points in C, i.e.⋃
n∈N

{θ1x1 + · · · + θnxn|x1, . . . , xn ∈ C, θ1 + · · · + θn = 1, θ1, . . . , θn > 0}

• convex hull (of course) is convex set
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Cones

Definition 12. [cones] set, C ⊂ Rn, for which

(∀x ∈ C, θ ≥ 0) (θx ∈ C)

called cone or nonnegative homogeneous

Definition 13. [convex cone] set, C ⊂ Rn, which is both convex and cone, called

convex cone; C is convex cone if and only if

(∀x, y ∈ C, θ, ξ ≥ 0) (θx + ξy ∈ C)

• convex cone (of course) is convex set

• examples of convex cones: Rn
+, R

n
++, S

n
+, and Sn

++
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Hyperplanes and half spaces

Definition 14. [hyperplanes] n − 1 dimensional affine set in Rn, called hyperplane;

every hyperplane can be expressed as

{x ∈ Rn|aT
= b}

for some a ̸= 0 ∈ Rn and b ∈ R

Definition 15. [half spaces] one of two sets divided by hyperplane, called half space;

every half space can be expressed as

{x ∈ Rn|aT ≤ b}

for some a ̸= 0 ∈ Rn and b ∈ R

• hyperplanes and half spaces are convex sets

Searching for Universal Truths - Convex Optimization - Convex Sets 16
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Euclidean balls and ellipsoids

Definition 16. [Euclidean ball] set of all points distance of which from point, x ∈ Rn,

is no greater than r > 0, called (Euclidean) ball centered at x with radius, r, denoted by

B(x, r), i.e.

B(x, r) = {y ∈ Rn|∥y − x∥2 ≤ r}

Definition 17. [ellipsoids] ball elongated along n orthogonal axes, called ellipsoid, i.e.,

{y ∈ Rn|(y − x)
T
P

−1
(y − x) ≤ 1}

for some x ∈ Rn and P ∈ Sn
++

• Euclidean balls and ellipsoids are convex sets

Searching for Universal Truths - Convex Optimization - Convex Sets 17
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Norm balls and norm cones

Definition 18. [norm ball] for norm, ∥ · ∥ : Rn → R+, set of all points distance of

which measured in the norm from point, x ∈ Rn, is no greater than r > 0, called norm

ball centered at x with radius, r, associated with norm, ∥ · ∥, i.e.

{y ∈ Rn|∥y − x∥ ≤ r}

Definition 19. [norm cone] for norm, ∥ · ∥ : Rn → R+, x ∈ Rn, and r > 0,

{(x, y) ∈ Rn × R|∥x∥ ≤ r} ⊂ Rn+1

called cone associated with norm, ∥ · ∥

Definition 20. [second-order cone] norm cone associated with Euclidean norm, called

second-order cone

• norm balls and norm cones are convex sets

Searching for Universal Truths - Convex Optimization - Convex Sets 18
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Polyhedra

Definition 21. [polyhedra] intersection of finite number of hyperplanes and half spaces,

called polyhedron; every polyhedron can be expressed as

{x ∈ Rn|Ax ⪯ b, Cx = d}

for A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, d ∈ Rp

• polyhedron is convex set (by Proposition 1)

Searching for Universal Truths - Convex Optimization - Convex Sets 19
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Convexity preserving set operations

Proposition 1. [convexity preserving set operations]

• intersection preserves convexity

– for (any) collection of convex sets, C, ⋂
C∈C

C

is convex set (proof can be found in Proof 1)

• scalar scaling preserves convexity

– for convex set C

αC

is convex set for any α ∈ R

• sum preserves convexity

– for convex sets C and D

C + D

is convex set

Searching for Universal Truths - Convex Optimization - Convex Sets 20
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• direct product preserves convexity

– for convex sets C and D

C × D

is convex set

• projection preserves convexity

– for convex set C ⊂ A × B

{x ∈ A|(∃y)((x, y) ∈ C)}

is convex

• image and inverse image by affine function preserve convexity

– for affine function f : A → B and convex sets C ⊂ A and D ⊂ B

f(C) & f
−1

(D)

are convex

• image and inverse image by linear-fractional function preserve convexity

Searching for Universal Truths - Convex Optimization - Convex Sets 21
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– for convex sets C ⊂ Rn, D ⊂ Rm and linear-fractional function, g : Rn → Rm,

i.e., function defined by g(x) = (Ax + b)/(cTx + d) for A ∈ Rm×n, b ∈ Rm,

c ∈ Rn, and d ∈ R
g(C) & g

−1
(D)

are convex

Searching for Universal Truths - Convex Optimization - Convex Sets 22
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Proper cones and generalized inequalities

Definition 22. [proper cones] closed convex cone K which is

- solid, i.e., K◦ ̸= ∅
- pointed, i.e., x ∈ vK and −x ∈ K imply x = 0

called proper cone

• examples of proper cones: Rn
+ and Sn

+

Definition 23. [generalized inequalities] proper coneK defines generalized inequalities

- (nonstrict) generalized inequality

x ⪯K y ⇔ y − x ∈ K

- strict generalized inequality

x ≺K y ⇔ y − x ∈ K
◦

• ⪯K and ≺K are partial orderings

Searching for Universal Truths - Convex Optimization - Convex Sets 23
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Convex sets induced by generalized inequalities

• for affine function g : Rn → Sm, i.e., f(x) = A0 + A1x1 + · · · + Anxn for some

A0, . . . , An ∈ Sm, f−1(Sn
+) is convex (by Proposition 1), i.e.,

{x ∈ Rn|A0 + A1x1 + · · · + Anxn ⪰ 0} ⊂ Rn

is convex

• can negate each matrix Ai and have same results, hence

{x ∈ Rn|A0 + A1x1 + · · · + Anxn ⪯ 0} ⊂ Rn

is (also) convex

Searching for Universal Truths - Convex Optimization - Convex Sets 24
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Separating and supporting hyperplanes

Theorem 1. [separating hyperplane theorem] for nonempty disjoint convex sets C

and D, exists hyperplane which separates C and D, i.e.

(∃a ̸= 0 ∈ Rn
, b ∈ R) (∀x ∈ C, y ∈ D)

(
a
T
x + b ≥ 0 & a

T
y + b ≤ 0

)
Definition 24. [separating hyperplanes] for nonempty disjoint convex sets C and D,

hyperplane satisfying property in Theorem 1, called separating hyperplane, said to separate

C and D

Theorem 2. [supporting hyperplane theorem] for nonempty convex set C and x ∈
bdC, exists hyperplane passing through x, i.e.,

(∃a ̸= 0 ∈ Rn
) (∀y ∈ C)

(
a
T
(y − x) ≤ 0

)
Definition 25. [supporting hyperplanes] for nonempty convex set C and x ∈ bdC,

hyperplane satisfied property in Theorem 2, called supporting hyperplane

Searching for Universal Truths - Convex Optimization - Convex Sets 25
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Dual cones

Definition 26. [dual cones] for cone K,

{x|∀y ∈ K, y
T
x ≥ 0}

called dual cone of K, denoted by K∗

• the figure illustrates x ∈ K∗ while z ̸∈ K∗
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Dual norms

Definition 27. [dual norms] for norm ∥ · ∥, fudnction defined by

y 7→ sup{yT
x|∥x∥ ≤ 1}

called dual norm of ∥ · ∥, denoted by ∥ · ∥∗

• examples

– dual cone of subspace V ⊂ Rn is orthogonal complement of V , V ⊥, where

V ⊥ = {y|∀v ∈ V, vTy = 0}

– Rn
+ and Sn

+ are self-dual

– dual of norm cone is norm cone associated with dual norm, i.e., if K = {(x, t) ∈
Rn × R|∥x∥ ≤ t}

K = {(y, u) ∈ Rn × R|∥y∥∗ ≤ u}

Searching for Universal Truths - Convex Optimization - Convex Sets 27
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Properties of dual cones

Proposition 2. [properties of dual cones] for cones K, K1, and K2

- K∗ is closed and convex

- K1 ⊂ K2 ⇒ K∗
2 ⊂ K∗

1

- if K◦ ̸= ∅, K∗ is pointed

- if K is pointed, (K∗)
◦ ̸= ∅

- K∗∗ = (K∗)∗ is closure of convex hull of K,

- K∗ is closed and convex

thus,

- if K is closed and convex, K∗∗ = K

- dual of proper cone is proper cone

- for proper cone K, K∗∗ = K

Searching for Universal Truths - Convex Optimization - Convex Sets 28
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Dual generalized inequalities

• dual of proper cone is proper (Proposition 2), hence the dual also induces generalized

inequalities

Proposition 3. for proper cone K,

- x ⪯K y if and only if (∀λ ⪰K∗ 0)(λTx ≤ λTy)

- x ≺K y if and only if (∀λ ⪰K∗ 0 with λ ̸= 0)(λTx < λTy)

K∗∗ = K, hence above are equivalent to

- x ⪯K∗ y if and only if (∀λ ⪰K 0)(λTx ≤ λTy)

- x ≺K∗ y if and only if (∀λ ⪰K 0 with λ ̸= 0)(λTx < λTy)

Searching for Universal Truths - Convex Optimization - Convex Sets 29
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Theorem of alternative for linear strict generalized inequalities

Theorem 3. [theorem of alternative for linear strict generalized inequalities] for proper

cone K ⊂ Rm, A ∈ Rm×n, and b ∈ Rm,

Ax ≺K b

is infeasible if and only if exist nonzero λ ∈ Rm such that

λ ̸= 0, λ ⪰K∗ 0, A
T
λ = 0, λ

T
b ≤ 0

Above two inequality systems are alternative, i.e., for any data, A and b, exactly one of

them is feasible. (proof can be found in Proof 2)

Searching for Universal Truths - Convex Optimization - Convex Sets 30
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Convex functions

Definition 28. [convex functions]

- function f : Rn → R the domain of which is convex and which satisfies

(∀x, y ∈ dom f, 0 ≤ θ ≤ 1) (f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y))

said to be convex

- function f : Rn → R the domain of which is convex and which satisfies

(∀ distinct x, y ∈ dom f, 0 < θ < 1) (f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y))

said to be strictly convex

Definition 29. [concave functions]

- function f : Rn → R the domain of which is convex where −f is convex, said to be

concave

- function f : Rn → R the domain of which is convex where −f is strictly convex,

said to be strictly concave

Searching for Universal Truths - Convex Optimization - Convex Functions 32
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Extended real-value extensions of convex functions

Definition 30. [extended real-value extension of convex functions] for convex function

f , function f̃ : Rn → R ∪ {∞} defined by

f̃(x) =

{
f(x) if x ∈ dom f

∞ if x ̸∈ dom f

called extended real-value extension of f

• using extended real-value extensions of convex functions, can drop “dom f” in

equations, e.g.,

– f is convex if and only if its extended-value extension f̃ satisfies

(∀x, y ∈ dom f, 0 ≤ θ ≤ 1) (f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y))

– f is strictly convex if and only if its extended-value extension f̃ satisfies

(∀ distinct x, y ∈ dom f, 0 < θ < 1) (f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y))

Searching for Universal Truths - Convex Optimization - Convex Functions 33
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First-order condition for convexity

Theorem 4. [first-order condition for convexity] differentiable f , i.e., dom f is open

and gradient ∇f exists at every point in dom f , is

- convex if and only if dom f is convex and

(∀x, y ∈ dom f)
(
f(y) ≥ f(x) + ∇f(x)

T
(y − x)

)
- strictly convex if and only if dom f is convex and

(∀ distinct x, y ∈ dom f)
(
f(y) > f(x) + ∇f(x)

T
(y − x)

)
• Theorem 4 implies that for convex function f

– first-order Taylor approximation is global underestimator

– can derive global information from local information

- e.g., if ∇f(x) = 0, x is global minimizer

- explains remarkable properties of convex functions and convex optimization

problems

Searching for Universal Truths - Convex Optimization - Convex Functions 34
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Second-order condition for convexity

Theorem 5. [second-order condition for convexity] twice-differentiable f , i.e.,

dom f is open and Hessian ∇2f exists at every point in dom f , is convex if and

only if dom f is convex and

(∀x ∈ dom f)
(
∇2

f(x) ⪰ 0
)

- if dom f is convex and

(∀x ∈ dom f)
(
∇2

f(x) ≻ 0
)

it is strictly convex

Searching for Universal Truths - Convex Optimization - Convex Functions 35
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Convex function examples

- assume function f : Rn → R and dom f = Rn unlesss specified otherwise

• affine function, i.e., f(x) = aTx + b for some a ∈ Rn and b ∈ R, is convex

• quadratic functions - if f(x) = xTPx + qTx for some P ∈ Sn and q ∈ Rn

– f is convex if and only if P ⪰ 0

– f is strictly convex if and only if P ≻ 0

• exponential function, i.e., f(x) = exp(aTx + b) for some a ∈ Rn and b ∈ R, is
convex

• power, i.e., f(x) = xa for some a ≥ 1, is convex on R++

• power of absolute value, i.e., f(x) = |x|a for some a ≥ 1, is convex on R

• logarithm function, i.e., f(x) = log x, is concave on R++

• negative entropy, i.e.,

f(x) =

{
x log x if x > 0

0 if x = 0

is convex on R+

Searching for Universal Truths - Convex Optimization - Convex Functions 36
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• norm as function is convex (by definition of norms, i.e., triangle inequality & absolute

homogeneity)

• max function, i.e., f(x) = max(x1, . . . , xn}, is convex

• quadratic-over-linear function, f(x, y) = x2/y, is convex on R × R++

• log-sum-exp, f(x) = log(exp(x1) + · · · + exp(xn)), is convex

• geometric mean, f(x) = (
∏n

i=1 xi)
1/n, is concave on Rn

++

• log-determinant, f(X) = log detX, is concave on Sn
++

Searching for Universal Truths - Convex Optimization - Convex Functions 37
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Sublevel sets and superlevel sets

Definition 31. [sublevel sets] for function f and α ∈ R,

{x ∈ dom f |f(x) ≤ α}

called α-sublevel set of f

Definition 32. [superlevel sets] for function f and α ∈ R,

{x ∈ dom f |f(x) ≥ α}

called α-superlevel set of f

Proposition 4. [convexity of level sets]

- every sublevel set of convex function is convex

- and every superlevel set of concave function is convex

• note, however, converse is not true

– e.g., every sublevel set of log is convex, but log is concave

Searching for Universal Truths - Convex Optimization - Convex Functions 38
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Epigraphs and hypographs

Definition 33. [epigraphs] for function f ,

{(x, t)|x ∈ dom f, f(x) ≤ t}

called epigraph of f , denoted by epi f

Definition 34. [hypographs] for function f ,

{(x, t)|x ∈ dom f, f(x) ≥ t}

called hypograph of f , denoted by hypo f

Proposition 5. [graphs and convexity]

- function is convex if and only if its epigraph is convex

- function is concave if and only if its hypograph is convex

Searching for Universal Truths - Convex Optimization - Convex Functions 39
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Convexity preserving function operations

Proposition 6. [convexity preserving function operations]

• nonnegative weighted sum preserves convexity

– for convex functions f1, . . . , fn and nonnegative weights w1, . . . , wn

w1f1 + · · ·wnfn

is convex

• nonnegative weighted integration preserves convexity

– for measurable set Y , w : Y → R+, and f : X × Y where f(x, y) is convex in

x for every y ∈ Y and measurable in y for every x ∈ X∫
Y

w(y)f(x, y)dy

is convex

• pointwise maximum preserves convexity

Searching for Universal Truths - Convex Optimization - Convex Functions 40
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– for convex functions f1, . . . , fn

max{f1, . . . , fn}

is convex

• pointwise supremum preserves convexity

– for indexed family of convex functions {fλ}λ∈Λ

sup
λ∈Λ

fλ

is convex (one way to see this is epi supλ fλ =
⋂

λ epi fλ)

• composition

– suppose g : Rn → Rk, h : Rk → R, and f = h ◦ g

- f convex if h convex & nondecreasing in each argument, and gi convex

- f convex if h convex & nonincreasing in each argument, and gi concave

- f concave if h concave & nondecreasing in each argument, and gi concave

- f concave if h concave & nonincreasing in each argument, and gi convex

• minimization

Searching for Universal Truths - Convex Optimization - Convex Functions 41
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– for function f(x, y) convex in (x, y) and convex set C

inf
y∈C

f(x, y)

is convex provided it is bounded below where domain is {x|(∃y ∈ C)((x, y) ∈
dom f)} (proof can be found in Proof 3)

• perspective of convex function preserves convexity

– for convex function f : X → R, function g : X × R → R defined by

g(x, t) = tf(x/t)

with dom g = {(x, t)|x/t ∈ dom f, t > 0} is convex
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Convex functions examples

Proposition 6 implies

• piecewise-linear function is convex, i.e.

- max{aT
1 x + b1, . . . , a

T
mx + bm} for some ai ∈ Rn and bi ∈ R is convex

• sum of k largest components is convex, i.e.

- x[1] + · · · + x[k] where x[i] denotes i-th largest component, is convex (since

f(x) = max{xi1
+ · · · + xir|1 ≤ i1 < i2 < · · · < ir ≤ n})

• support function of set, i.e.,

- sup{xTy|y ∈ A} for A ⊂ Rn is convex

• distance (when measured by arbitrary norm) to farthest point of set

- sup{∥x − y∥|y ∈ A} for A ⊂ Rn is convex

• least-squares cost as function of weights

- inf
x∈Rn

∑n
i=1 wi(a

T
i x − bi)

2 for some ai ∈ Rn and bi ∈ R is concave

- note that above function equals to
∑n

i=1 wib
2
i−
∑n

i=1 w
2
i b

2
ia

T
i

(∑n
j=1 wjaja

T
j

)−1

ai

but not clear whether it is concave
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• maximum eigenvalue of symmetric matrix

- λmax(F (x)) = sup{yTF (x)y|∥y∥2 ≤ 1} where F : Rn → Sm is linear function

in x

• norm of matrix

- sup{uTG(x)v|∥u∥2 ≤ 1, ∥v∥2 ≤ 1} where G : Rn → Rm×n is linear function

in x

• distance (when measured by arbitrary norm) to convex set

- for convex set C, inf{∥x − y∥|y ∈ C}
• infimum of convex function subject to linear constraint

- for convex function h, inf{h(y)|Ay = x} is convex (since it is infy(h(y) +

IAy=x(x, y)))

• perspective of Euclidean norm squared

- map (x, t) 7→ xTx/t induces convex function in (x, t) for t > 0

• perspective of negative log

- map (x, t) 7→ −t log(x/t) induces convex function in (x, t) ∈ R2
++
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• perspective of convex function

- for convex function f : Rn → R, function g : Rn → R defined by

g(x) = (c
T
x + d)f((Ax + b)/(c

T
x + d))

from some A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R with dom g = {x|(Ax +

b)/(cTx + d) ∈ dom f, cTx + d > 0} is convex
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Conjugate functions

Definition 35. [conjugate functions] for function f

sup
y∈dom f

(x
T
y − f(y))

called conjugate function of f , denoted by f∗

• conjugate function is convex for any function f because it is supremum of linear (hence

convex) functions (in x) (Proposition 6)

Inequality 1. [Fenchel’s inequality] definition of conjugate function implies

f(x) + f
∗
(y) ≥ x

T
y

sometimes called Young’s inequality

Proposition 7. [conjugate of conjugate] for convex and closed function f

f
∗∗

= f

where closed function f is defined by function with closed epi f
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Conjugate function examples

• strictly convex quadratic function

– for f : Rn → R+ defined f(x) = xTQx/2 where Q ∈ Sn
++,

f
∗
(x) = sup

y
(y

T
x − y

T
Qy/2) = (y

T
x − y

T
Qy/2)|y=Q−1x = x

T
Q

−1
x/2

which is also strictly convex quadratic function

• log-determinant

– for function f : Sn
++ → R defined by f(X) = log detX−1

f
∗
(X) = sup

Y ∈Sn
++

(TrXY + log detY ) = log det(−X)
−1 − n

where dom f∗ = −Sn
++

• indicator function
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– for indicator function IA : Rn → {0,∞} with A ⊂ Rn

I
∗
A(x) = sup

y
(y

T
x − IA(y)) = sup{yT

x|y ∈ A}

which is support function of A

• log-sum-exp function

– for function f : Rn → R defined by f(x) = log(
∑n

i=1 exp(xi))

f
∗
(x) =

n∑
i=1

xi log xi + Ix⪰0,1Tx=1(x)

• norm

– for norm function f : Rn → R+ defined by f(x) = ∥x∥

f
∗
(x) = sup

y
(y

T
x − ∥y∥) = I∥x∥∗≤1(x)

• norm squared
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– for function f : R → R+ defined by f(x) = ∥x∥2/2

f
∗
(x) = ∥x∥2

∗/2

• differentiable convex function

– for differentiable convex function f : Rn → R

f
∗
(x) = (y

∗
)
T∇f(y

∗
) − f(y

∗
)

where y∗ = argsupy(x
Ty − f(y))

• sum of independent functions

– for function f : Rn × Rm → R defined by f(x, y) = f1(x) + f2(y) where

f1 : Rn → R and f2 : Rm → R

f
∗
(x, y) = f

∗
1 (x) + f

∗
2 (y)
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Convex functions with respect to generalized inequalities

Definition 36. [K-convex functions] for proper cone K,

- function f satisfying

(∀x, y ∈ dom f, 0 ≤ θ ≤ 1) (f(θx + (1 − θ)y) ⪯K θf(x) + (1 − θ)f(y))

called K-convex

- function f satisfying

(∀x ̸= y ∈ dom f, 0 < θ < 1) (f(θx + (1 − θ)y) ≺K θf(x) + (1 − θ)f(y))

called strictly K-convex

Proposition 8. [dual characterization of K-convexity] for proper cone K

- function f is K-convex if and only if for every w ⪰K∗ 0, wTf is convex

- function f is strictly K-convex if and only if for every nonzero w ⪰K∗ 0, wTf is

strictly convex
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Matrix convexity

Definition 37. [matrix convexity] function of Rn into Sm which is K-convex where

K = Sm
+ , called matrix convex

• examples of matrix convexity

– function of Rn×m into Sn
+ defined by X 7→ XXT is matrix convex

– function of Sn
++ into itself defined by X 7→ Xp is matrix convex for 1 ≤ p ≤ 2 or

−1 ≤ p ≤ 0, and matrix concave for 0 ≤ p ≤ 1

– function of Sn into Sn
++ defined by X 7→ exp(X) is not matrix convex

– quadratic matrix function of Rm×n into Sn defined by X 7→ XTAX + BTX +

XTB + C for A ∈ Sm, B ∈ Rm×n, and C ∈ Sn is matrix convex when A ⪰ 0
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Optimization problems

Definition 38. [optimization problems] for f : F → R, q : Q → Rm, h : H → Rp

where F , Q, and H are subsets of common set X

minimize f(x)

subject to q(x) ⪯ 0

h(x) = 0

called optimization problem where x is optimization variable

- f , q, and h are objective function, inequality & equality contraint function

- q(x) ⪯ 0 and h(x) = 0 are inequality contraints and equality contraints

- D = F ∩ Q ∩ H is domain of optimization problem

- F = {x ∈ D|q(x) ⪯ 0, h(x) = 0}, called feasible set, x ∈ D, said to be feasible

if x ∈ F , optimization problem, said to be feasible if F ≠ ∅
- p∗ = inf{f(x)|x ∈ F}, called optimal value of optimization problem

- if optimization problem is infeasible, p∗ = ∞ (following convention that infimum of

empty set is ∞)

- if p∗ = −∞, optimization problem said to be unbounded
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Global and local optimalities

Definition 39. [global optimality] for optimization problem in Definition 38

- x ∈ F with f(x) = p∗, called (global) optimal point

- Xopt = {x ∈ F|f(x) = p∗}, called optimal set

- when Xopt ̸= ∅, we say optimal value is attained or achieved and optimization

problem is solvable

• optimization problem is not solvable if p∗ = ∞ or p∗ = −∞ (converse is not true)

Definition 40. [local optimality] for optimization problem in Definition 38 where X is

metric space, x ∈ F satisfying inf{f(z)|z ∈ F, ρ(z, x) ≤ r} where ρ : X×X → R+

is metric, for some r > 0, said to be locally optimal, i.e., x solves

minimize f(z)

subject to q(z) ⪯ 0

h(z) = 0

ρ(z, x) ≤ r
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Equivalent optimization problems

Definition 41. [equivalent optimization problems] two optimization problems where

solving one readily solve the other, said to be equivalent

• below two optimization problems are equivalent

–
minimize −x − y

subject to 2x + y ≤ 1

x + 2y ≤ 1

–
minimize −2u − v/3

subject to 4u + v/3 ≤ 1

2u + 2v/3 ≤ 1

since if (x∗, y∗) solves first, (u, v) = (x∗/2, 3y∗) solves second, and if (u∗, v∗)

solves second, (x, y) = (2u∗, v∗/3) solves first
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Change of variables

• given function ϕ : Z → X, optimization problem in Definition 38 can be rewritten as

minimize f(ϕ(z))

subject to q(ϕ(z)) ⪯ 0

h(ϕ(z)) = 0

where z ∈ Z is optimization variable

• if ϕ is injective and D ⊂ ϕ(Z), above optimization problem and optimization problem

in Definition 38 are equivalent, i.e.

– Xopt is optimal set of problem in Definition 38 ⇒ ϕ−1(Xopt) is optimal set of above

problem

– Zopt is optimal set of above problem ⇒ ϕ(Zopt) is optimal set of problem in

Definition 38

• two optimization problems said to be related by change of variable or substitution of

variable x = ϕ(z)
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Convex optimization

Definition 42. [convex optimization] optimization problem in Definition 38 where X

is Banach space, i.e., complete linear normed vector space, f & q are convex functions,

and h is affine function, called convex optimization problem

- when X = Rn, optimization problem can be formulated as

minimize f(x)

subject to q(x) ⪯ 0

Ax = b

for some A ∈ Rp×n and b ∈ Rp

• domain of convex optimization problem is convex

– since domains of f , q, and h are convex (by definition of convex functions) and

intersection of convex sets is convex

• feasible set of convex optimization problem is convex

– since sublevel sets of convex functions are convex, feasible sets for affine function is

either empty set, singleton, or affine sets, all of which are convex sets
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Optimality conditions for convex optimization problems

Theorem 6. [local optimality implies global optimality] for convex optimization

problem (in Definition 42), every local optimal point is global optimal point

Theorem 7. [optimality conditions for convex optimality problems] for convex optimization

problem (in Definition 42), when f is differentiable (i.e., dom f is open and ∇f exists

everywhere in dom f)

- x ∈ D is optimal if and only if x ∈ F and

(∀y ∈ F)
(
∇f(x)

T
(y − x) ≥ 0

)
- for unconstrained problems, x ∈ D is optimal if and only if

∇f(x) = 0
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Optimality conditions for some convex optimization problems

• unconstrained convex quadratic optimization

minimize f(x) = (1/2)xTPx + qTx

where F = Rn and P ∈ Sn
+

– x is optimal if and only if

∇f(x) = Px + q = 0

exist three cases

- if P ∈ Sn
++, exists unique optimum x∗ = −P−1q

- if q ∈ R(P ), Xopt = −P †q + N (P )

- if q ̸∈ R(P ), p∗ = −∞
• analytic centering

minimize f(x) = −
∑m

i=1 log(bi − aT
i x)
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where F = {x ∈ Rn|Ax ≺ b}
– x is optimal if and only if

∇f(x) =

m∑
i=1

1

bi − aT
i x

ai = 0

exist three cases

- exists unique optimum, which happens if and only if {x|bi − aT
i x} is nonempty

and bounded

- exist infinitely many optima, in which case, Xopt is affine set

- exists no optimum, which happens if and only if f is unbounded below

• convex optimization problem with equality constraints only

minimize f(x)

subject to Ax = b

where X = Rn

– x is optimal if and only if

∇f(x) ⊥ N (A)
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or equivalently, exists ν ∈ Rp such that

∇f(x) = A
T
ν
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Linear programming

Definition 43. [linear programming] convex optimization problem in Definition 42 with

X = Rn and linear f & q, called linear program (LP), which can be formulated as

minimize cTx

subject to Cx ⪯ d

Ax = b

where c ∈ Rn, C ∈ Rm×n, d ∈ Rm, A ∈ Rp×n, b ∈ Rp

- can transform above LP into standard form LP

minimize c̃T x̃

subject to Ãx̃ = b̃

x̃ ⪰ 0
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LP examples

• diet problem - find amount of n different food to minimize purchase cost while satisfying

nutrition requirements

– assume exist n food and m nutritions, ci is cost of food i, Aji is amount of nutrition

j contained in unit quantity of food i, bj is amount requirement for nutrition j

– diet problem can be formulated as LP

minimize cTx

subject to Ax ⪰ b

x ⪰ 0

• Chebyshev center of polyhedron - find largest Euclidean ball contained in polyhedron

– assume polyhedron is {x ∈ Rn|aT
i x ≤ bi, i = 1, . . . ,m}

– problem of finding Chebyshev center of polyhedron can be formulated as LP

maximize r

subject to aT
i x + r∥ai∥2 ≤ bi
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where optimization variables are x ∈ Rn and r ∈ R

• piecewise-linear minimization - minimize maximum of affine functions

– assume m affine functions aT
i x + bi

– piecewise-linear minimization problem can be formulated as LP

minimize t

subject to aT
i x + bi ≤ t, i = 1, . . . ,m

• linear-fractional program

minimize (cTx + d)/(eTx + f)

subject to Gx ⪯ h

Ax = b
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– if feasible set is nonempty, can be formulated as LP

minimize cTy + dz

subject to Gy − hz ⪯ 0

Ay − bz = 0

eTy + fz = 1

z ≥ 0
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Quadratic programming

Definition 44. [quadratic programming] convex optimization problem in Definition 42

with X = Rn and convex quadratic f and linear q, called quadratic program (QP), which

can be formulated as
minimize (1/2)xTPx + qTx

subject to Gx ⪯ h

Ax = b

where P ∈ Sn
+, q ∈ Rn, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, b ∈ Rp

• when P = 0, QP reduces to LP, hence LP is specialization of QP
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QP examples

• least-squares (LS) problems

– LS can be formulated as QP

minimize ∥Ax − b∥2
2

• distance between two polyhedra

– assume two polyhedra {x ∈ Rn|Ax ⪯ b, Cx = d} and {x ∈ Rn|Ãx ⪯ b̃, C̃x =

d̃}
– problem of finding distance between two polyhedra can be formulated as QP

minimize ∥x − y∥2
2

subject to Ax ⪯ b, Cx = d

Ãy ⪯ b̃, C̃y = d̃
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Quadratically constrained quadratic programming

Definition 45. [quadratically constrained quadratic programming] convex optimization

problem in Definition 42 with X = Rn and convex quadratic f & q, called quadratically

constrained quadratic program (QCQP), which can be formulated as

minimize (1/2)xTP0x + qT0 x

subject to (1/2)xTPix + qTi x + ri ≤ 0, i = 1, . . . ,m

Ax = b

where Pi ∈ Sn
+, qi ∈ Rn, ri ∈ R, A ∈ Rp×n, b ∈ Rp

• when Pi = 0 for i = 1, . . . ,m, QCQP reduces to QP, hence QP is specialization of

QCQP
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Second-order cone programming

Definition 46. [second-order cone programming] convex optimization problem in

Definition 42 with X = Rn and linear f and convex q of form

minimize fTx

subject to ∥Aix + bi∥2 ≤ cTi x + di, i = 1, . . . ,m

Fx = g

where f ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni, ci ∈ Rn, di ∈ R, F ∈ Rp×n, g ∈ Rp called

second-order cone program (SOCP)

• when bi = 0, SOCP reduces to QCQP, hence QCQP is specialization of SOCP
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SOCP examples

• robust linear program - minimize cTx while satisfying ãT
i x ≤ bi for every ãi ∈

{ai + Piu|∥u∥2 ≤ 1} where Pi ∈ Sn

– can be formulated as SOCP

minimize cTx

subject to aT
i x + ∥P T

i x∥2 ≤ bi

• linear program with random constraints - minimize cTx while satisfying ãT
i x ≤ bi with

probability no less than η where ã ∼ N (ai,Σi)

– can be formulated as SOCP

minimize cTx

subject to aT
i x + Φ−1(η)∥Σ1/2

i x∥2 ≤ bi
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Geometric programming

Definition 47. [monomial functions] function f : Rn
++ → R defined by

f(x) = cx
a1
1 · · · xan

n

where c > 0 and ai ∈ R, called monomial function or simply monomial

Definition 48. [posynomial functions] function f : Rn
++ → R which is finite sum of

monomial functions, called posynomial function or simply posynomial

Definition 49. [geometric programming] optimization problem

minimize f(x)

subject to q(x) ⪯ 1

h(x) = 1

for posynomials f : Rn
++ → R & q : Rn

++ → Rm and monomials h : Rn
++ → Rp, called

geometric program (GP)
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Geometric programming in convex form

• geometric program in Definition 49 is not convex optimization problem (as it is)

• however, can be transformed to equivalent convex optimization problem by change of

variables and transformation of functions

Proposition 9. [geometric programming in convex form] geometric program (in

Definition 49) can be transformed to equivalent convex optimization problem

minimize log
(∑K0

k=1 exp((a
(0)
k )Ty + b

(0)
k )
)

subject to log
(∑Ki

k=1 exp((a
(i)
k )Ty + b

(i)
k )
)

≤ 0 i = 1, . . . ,m

Gy = h

for some a
(i)
k ∈ Rn, b

(i)
k ∈ R, G ∈ Rp×n, h ∈ Rp where optimization variable is

y = log(x) ∈ Rn
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Convex optimization with generalized inequalities

Definition 50. [convex optimization with generalized inequality constraints] convex

optimization problem in Definition 42 with inequality constraints replaced by generalized

inequality constraints, i.e.

minimize f(x)

subject to qi(x) ⪯Ki
0 i = 1, . . . , q

h(x) = 0

where Ki ⊂ Rki are proper cones and qi : Qi → Rki are Ki-convex, called convex

optimization problem with generalized inequality constraints
• problem in Definition 50 reduces to convex optimization problem in Definition 42

when q = 1 and K1 = Rm
+ , hence convex optimization is specialization of convex

optimization with generalized inequalities

• like convex optimization

– feasible set is F = {x ∈ D|qi(x) ⪯Ki
0, Ax = b} is convex

– local optimality implies global optimality

– optimality conditions in Theorem 7 applies without modification
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Conic programming

Definition 51. [conic programming] convex optimization problem with generalized

inequality constraints in Definition 50 with linear f and one affine q

minimize f(x)

subject to q(x) ⪯K 0

h(x) = 0

called conic program (CP)

- can transform above CP to standard form CP

minimize f̃(X)

subject to h̃(X) = 0

X ⪰K 0

• cone program is one of simplest convex optimization problems with generalized

inequalities
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Semidefinite programming

Definition 52. [semidefinite programming] conic program in Definition 51 with X =

Rn and K = Sn
+

minimize cTx

subject to x1F1 + · · · + xnFn + G ⪯ 0

Ax = b

where F1, . . . , Fn, G ∈ Sk and A ∈ Rp×n, called semidefinite program (SDP)

- above inequality, called linear matrix inequality (LMI)

- can transform SDP to standard form SDP

minimize Tr(CX)

subject to Tr(AiX) = bi i = 1, . . . , p

X ⪰ 0

where X = Sn
+ and C,A1, . . . , Ap ∈ Sn and bi ∈ R

Searching for Universal Truths - Convex Optimization - Convex Optimization Problems 75



Sunghee Yun July 14, 2025

SDP examples

• LP

– if k = m, Fi = diag(C1,i, . . . , Cm,i), G = − diag(d1, . . . , dm) in

Definition 52, SDP reduces to LP in Definition 43

– hence, LP is specialization of SDP

• SOCP

– SOCP in Definition 46 is equivalent to

minimize fTx

subject to Fx = g[
cTi x + di xTAT

i + bTi
Aix + bi (cTi x + di)Ini

]
⪰ 0 i = 1, . . . ,m

which can be transformed to SDP in Definition 52, thus, SDP reduces to SOCP

– hence, SOCP is specialization of SDP
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Determinant maximization problems

Definition 53. [determinant maximization problems] convex optimization problem

with generalized inequality constraints in Definition 50 with X = Rn of form

minimize − log det(x1C1 + · · · + xnCn + D) + cTx

subject to x1F1 + · · · + xnFn + G ⪯ 0

−x1C1 − · · · − xnCn − D ≺ 0

Ax = b

where c ∈ Rn, C1, . . . , Cn, D ∈ Sl, F1, . . . , Fn, G ∈ Sk, and A ∈ Rp×n,

called determinant maximization problem or simply max-det problem (since it maximizes

determinant of (positive definite) matrix with constraints)

• if l = 1, C1 = · · · = Cn = 0, D = 1, max-det problem reduces to SDP, hence SDP

is specialization of max-det problem
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Diagrams for containment of convex optimization problems

• the figure shows containment relations among convex optimization problems

• vertical lines ending with filled circles indicate existence of direct reductions, i.e.,

optimization problem transformations to special cases

LP

QP

QCQP

SOCP

SDP

max-det
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Lagrangian

Definition 54. [Lagrangian] for optimization problem in Definition 38 with nonempty

domain D, function L : D × Rm × Rp → R defined by

L(x, λ, ν) = f(x) + λ
T
q(x) + ν

T
h(x)

called Lagrangian associated with the optimization problem where

- λ, called Lagrange multiplier associated inequality constraints q(x) ⪯ 0

- λi, called Lagrange multiplier associated i-th inequality constraint qi(x) ≤ 0

- ν, called Lagrange multiplier associated equality constraints h(x) = 0

- νi, called Lagrange multiplier associated i-th equality constraint hi(x) = 0

- λ and ν, called dual variables or Lagrange multiplier vectors associated with the

optimization problem
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Lagrange dual functions

Definition 55. [Lagrange dual functions] for optimization problem in Definition 38 for

which Lagrangian is defined, function g : Rm × Rp → R ∪ {−∞} defined by

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f(x) + λ

T
q(x) + ν

T
h(x)

)
called Lagrange dual function or just dual function associated with the optimization

problem

• g is (always) concave function (even when optimization problem is not convex)

- since is pointwise infimum of linear (hence concave) functions is concave

• g(λ, ν) provides lower bound for optimal value of associated optimization problem, i.e.,

g(λ, ν) ≤ p
∗

for every λ ⪰ 0 (proof can be found in Proof 4)

• (λ, ν) ∈ {(λ, ν)|λ ⪰ 0, g(λ, ν) > −∞}, said to be dual feasible
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Dual function examples

• LS solution of linear equations

minimize xTx

subject to Ax = b

– Lagrangian - L(x, ν) = xTx + νT (Ax − b)

– Lagrange dual function

g(ν) = −
1

4
ν
T
AA

T
ν − b

T
ν

• standard form LP
minimize cTx

subject to Ax = b

x ⪰ 0

– Lagrangian - L(x, λ, ν) = cTx − λTx + νT (Ax − b)
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– Lagrange dual function

g(λ, ν) =

{
−bTν ATν − λ + c = 0

−∞ otherwise

- hence, set of dual feasible points is {(ATν + c, ν)|ATν + c ⪰ 0}
• maximum cut, sometimes called max-cut, problem, which is NP-hard

minimize xTWx

subject to x2
i = 1

where W ∈ Sn

– Lagrangian - L(x, ν) = xT (W + diag(ν))x − 1Tx

– Lagrange dual function

g(ν) =

{
−1Tν W + diag(ν) ⪰ 0

−∞ otherwise

- hence, set of dual feasible points is {ν|W + diag(ν) ⪰ 0}
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• some trivial problem
minimize f(x)

subject to x = 0

– Lagrangian - L(x, ν) = f(x) + νTx

– Lagrange dual function

g(ν) = inf
x∈Rn

(f(x) + ν
T
x) = − sup

x∈Rn
((−ν)

T
x − f(x)) = −f

∗
(−ν)

- hence, set of dual feasible points is − dom f∗, and for every f : Rn → R and

ν ∈ Rn

−f
∗
(−ν) ≤ f(0)

• minimization with linear inequality and equality constraints

minimize f(x)

subject to Ax ⪯ b

Cx = d

– Lagrangian - L(x, λ, ν) = f(x) + λT (Ax − b) + νT (Cx − d)
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– Lagrange dual function

g(ν) = −b
T
λ − d

T
ν − f

∗
(−A

T
λ − C

T
ν)

- hence, set of dual feasible points is {(λ, ν)| −ATλ−CTν ∈ dom f∗, λ ⪰ 0}
• equality constrained norm minimization

minimize ∥x∥
subject to Ax = b

– Lagrangian - L(x, ν) = ∥x∥ + νT (Ax − b)

– Lagrange dual function

g(ν) = −b
T
ν − sup

x∈Rn
((−A

T
ν)

T
x − ∥x∥) =

{
−bTν ∥ATν∥∗ ≤ 1

−∞ otherwise

- hence, set of dual feasible points is {ν|∥ATν∥∗ ≤ 1}

Searching for Universal Truths - Convex Optimization - Duality 85



Sunghee Yun July 14, 2025

• entropy maximization
minimize

∑n
i=1 xi log xi

subject to Ax ⪯ b

1Tx = 1

where domain of objective function is Rn
++

– Lagrangian - L(x, λ, ν) =
∑n

i=1 xi log xi + λT (Ax − b) + ν(1Tx − 1)

– Lagrange dual function

g(λ, ν) = −b
T
λ − ν − exp(−ν − 1)

n∑
i=1

exp(a
T
i λ)

obtained using f∗(y) =
∑n

i=1 exp(yi − 1) where ai is i-th column vector of A

• minimum volume covering ellipsoid

minimize − log detX

subject to aT
i Xai ≤ 1 i = 1, . . . ,m

where domain of objective function is Sn
++

– Lagrangian - L(X,λ) = − log detX +
∑m

i=1 λi(a
T
i Xai − 1)
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– Lagrange dual function

g(λ) =

{
log det(

∑m
i=1 λiaia

T
i ) − 1Tλ + n

∑m
i=1 λiaia

T
i ≻ 0

−∞ otherwise

obtained using f∗(Y ) = − log det(−Y ) − n
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Best lower bound

• for every (λ, ν) with λ ⪰ 0, Lagrange dual function g(λ, ν) (in Definition 55) provides

lower bound for optimal value p∗ for optimization problem in Definition 38

• natural question to ask is

– how good is the lower bound?

– what is best lower bound we can achieve?

• these questions lead to definition of Lagrange dual problem
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Lagrange dual problems

Definition 56. [Lagrange dual problems] for optimization problem in Definition 38,

optimization problem
maximize g(λ, ν)

subject to λ ⪰ 0

called Lagrange dual problem associated with problem in Definition 38

- original problem in Definition 38, (somestime) called primal problem

- domain is Rm × Rp

- dual feasibility defined in page 81, i.e., (λ, ν) satisfying λ ⪰ 0 g(λ, ν) > −∞
indeed means feasibility for Lagrange dual problem

- d∗ = sup{g(λ, ν)|λ ∈ Rm, ν ∈ Rp, λ ⪰ 0}, called dual optimal value

- (λ∗, ν∗) = argsup{g(λ, ν)|λ ∈ Rm, ν ∈ Rp, λ ⪰ 0}, said to be dual optimal

or called optimal Lagrange multipliers (if exists)

• Lagrange dual problem in Definition 56 is convex optimization (even though original

problem is not) since g(λ, ν) is always convex
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Making dual constraints explicit dual problems

• (out specific) way we define Lagrange dual function in Definition 55 as function g of

Rm × Rp into R ∪ {−∞}, i.e., dom g = Rn × Rp

• however, in many cases, feasible set {(λ, ν)|λ ⪰ 0 g(λ, ν) > −∞} is proper

subset of Rn × Rp

• can make this implicit feasibility condition explicit by adding it as constraint (as shown

in following examples)
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Lagrange dual problems associated with LPs

• standard form LP

– primal problem
minimize cTx

subject to Ax = b

x ⪰ 0

– Lagrange dual problem

maximize g(λ, ν) =

{
−bTν ATν − λ + c = 0

−∞ otherwise

subject to λ ⪰ 0

(refer to page 83 for Lagrange dual function)

- can make dual feasibility explicit by adding it to constraints as mentioned on

page 90
maximize −bTν

subject to λ ⪰ 0

ATν − λ + c = 0
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- can further simplify problem

maximize −bTν

subject to ATν + c ⪰ 0

– last problem is inequality form LP

– all three problems are equivalent, but not same problems

– will, however, with abuse of terminology, refer to all three problems as Lagrange dual

problem

• inequality form LP

– primal problem
minimize cTx

subject to Ax ⪯ b

– Lagrangian

L(x, λ) = c
T
x + λ

T
(Ax − b)

– Lagrange dual function

g(λ) = −b
T
λ + inf

x∈Rn
(c + A

T
λ)

T
x =

{
−bTλ ATλ + c = 0

−∞ otherwise
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– Lagrange dual problem

maximize g(λ) =

{
−bTλ ATλ + c = 0

−∞ otherwise

subject to λ ⪰ 0

- can make dual feasibility explicit by adding it to constraints as mentioned on

page 90
maximize −bTν

subject to ATλ + c = 0

λ ⪰ 0

– dual problem is standard form LP

• thus, dual of standard form LP is inequality form LP and vice versa

• also, for both cases, dual of dual is same as primal problem
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Lagrange dual problem of equality constrained optimization problem

• equality constrained optimization problem

minimize f(x)

subject to Ax = b

• dual function

g(ν) = inf
x∈dom f

(f(x) + ν
T
(Ax − b)) = −b

T
ν − sup

x∈dom f
(−ν

T
Ax − f(x))

= −b
T
ν − f

∗
(−A

T
ν)

• dual problem

maximize −bTν − f∗(−ATν)
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Lagrange dual problem associated with equality constrained
quadratic program

• strictly convex quadratic problem

minimize f(x) = xTPx + qTx + r

subject to Ax = b

– conjugate function of objective function

f
∗
(x) = (x−q)

T
P

−1
(x−q)/4−r = x

T
P

−1
x/4−q

T
P

−1
x/2+q

T
P

−1
q/4−r

– dual problem

maximize −νT (AP−1AT )ν/4 − (b + AP−1q/2)Tν − qTP−1q/4 + r
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Lagrange dual problems associated with nonconvex quadratic
problems

• primal problem
minimize xTAx + 2bTx

subject to xTx ≤ 1

where A ∈ Sn, A ̸∈ Sn
+, and b ∈ Rn

– since A ̸⪰ 0, not convex optimization problem

– sometimes called trust region problem arising minimizing second-order approximation

of function over bounded region

• Lagrange dual function

g(λ) =

{
−bT (A + λI)†b − λ A + λI ⪰ 0, b ∈ R(A + λI)

−∞ otherwise

where (A + λI)† is pseudo-inverse of A + λI
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• Lagrange dual problem

maximize −bT (A + λI)†b − λ

subject to A + λI ⪰ 0, b ∈ R(A + λI)

where optimization variable is λ ∈ R

– note we do not need constraint λ ≥ 0 since it is implied by A + λI ⪰ 0

– though not obvious from what it appears to be, it is (of course) convex optimization

problem (by definition of Lagrange dual function, i.e., Definition 55)

– can be expressed ar

maximize −
∑n

i=1(q
T
i b)

2/(λi + λ) − λ

subject to λ ≥ −λmin(A)

where λi and qi are eigenvalues and corresponding orthogormal eigenvectors of A,

when λi + λ = 0 for some i, we interpret (qTi b)
2/0 as 0 if qTi 0 and ∞ otherwise
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Weak duality

• since g(λ, ν) ≤ p∗ for every λ ⪰ 0, we have

d
∗
= sup{g(λ, ν)|λ ∈ Rm

, ν ∈ Rp
, λ ⪰ 0} ≤ p

∗

Definition 57. [weak duality] property that that optimal value of optimization problem

(in Definition 38) is always no less than optimal value of Lagrange daul problem (in

Definition 56)

d
∗ ≤ p

∗

called weak duality

- d∗ is best lower bound for primal problem that can be obtained from Lagrange dual

function (by definition)

- weak duality holds even when d∗ or/and p∗ are not finite, e.g.

– if primal problem is unbounded below so that p∗ = −∞, must have d∗ = −∞,

i.e., dual problem is infeasible

– conversely, if dual problem is unbounded above so that d∗ = ∞, must have

p∗ = ∞, i.e., primal problem is infeasible
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Optimal duality gap

Definition 58. [optimal duality gap] difference between optimal value of optimization

problem (in Definition 38) and optimal value of Lagrange daul problem (in Definition 56),

i.e.

p
∗ − d

∗

called optimal duality gap

• sometimes used for lower bound of optimal value of problem which is difficult to solve

– for example, dual problem of max-cut problem (on page 83), which is NP-hard, is

minimize −1Tν

subject to W + diag(ν) ⪰ 0

where optimization variable is ν ∈ Rn

- the dual problem can be solved very efficiently using polynomial time algorithms

while primal problme cannot be solved unless n is very small
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Strong duality

Definition 59. [strong duality] if optimal value of optimization problem (in

Definition 38) equals to optimal value of Lagrange daul problem (in Definition 56),

i.e.

p
∗
= d

∗

strong duality said to hold

• strong duality does not hold in general

– if it held always, max-cut problem, which is NP-hard, can be solved in polynomial

time, which would be one of biggest breakthrough in field of theoretical computer

science

– may mean some of strongest cryptography methods, e.g., homeomorphic

cryptography, can be broken
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Slater’s theorem

• exist many conditions which guarantee strong duality, which are called constraint

qualifications - one of them is Slater’s condition

Theorem 8. [Slater’s theorem] if optimization problem is convex (Definition 42), and

exists feasible x ∈ D contained in relintD such that

q(x) ≺ 0 h(x) = 0

strong duality holds (and dual optimum is attained when d∗ > −∞)

- such condition, called Slater’s condition

- such point, (sometimes) said to be strictly feasible

when there are affine inequality constraints, can refine Slater’s condition - if first k

inequality constraint functions q1, . . . , qk are affine, Slater’s condition can be relaxed to

qi(x) ≤ 0 i = 1, . . . , k qi(x) < 0 i = k + 1, . . . ,m h(x) = 0
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Strong duality for LS solution of linear equations

• primal problem
minimize xTx

subject to Ax = b

• dual problem

maximize g(ν) = −1
4ν

TAATν − bTν

(refer to page 82 for Lagrange dual function)

• “dual is always feasible” and “primal is feasible ⇒ Slater’s condition holds”, thus

Slater’s theorem (Theorem 8) implies, exist only three cases

– (d∗ = p∗ ∈ R) or (d∗ ∈ R & p∗ = ∞) or (d∗ = p∗ = ∞)

• if primal is infeasible, though, b ̸∈ R(A), thus exists z, such that ATz = 0 and

bTz ̸= 0, then line {tz|t ∈ R} makes dual problem unbounded above, hence d∗ = ∞

• hence, strong duality always holds, i.e., (d∗ = p∗ ∈ R) or (d∗ = p∗ = ∞)
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Strong duality for LP

• every LP either is infeasible or satisfies Slater’s condition

• dual of LP is LP, hence, Slater’s theorem (Theorem 8) implies

– if primal is feaisble, either (d∗ = p∗ = −∞) or (d∗ = p∗ ∈ R)

– if dual is feaisble, either (d∗ = p∗ = ∞) or (d∗ = p∗ ∈ R)

– only other case left is (d∗ = −∞ & p∗ = ∞)

- indeed, this pathological case can happen
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Strong duality for entropy maximization

• primal problem
minimize

∑n
i=1 xi log xi

subject to Ax ⪯ b

1Tx = 1

• dual problem (refer to page 86 for Lagrange dual function)

maximize −bTλ − ν − exp(−ν − 1)
∑n

i=1 exp(a
T
i λ)

subject to λ ⪰ 0

• dual problem is feasible, hence, Slater’s theorem (Theorem 8) implies, if exists x ≻ 0

with Ax ⪯ b and 1Tx = 1, strong duality holds, and indeed d∗ = p∗ ∈ R

• by the way, can simplify dual problem by maximizing dual objective function over ν

maximize −bTλ − log
(∑n

i=1 exp(a
T
i λ)
)

subject to λ ⪰ 0

which is geometry program in convex form (Proposition 9) with nonnegativity contraint
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Strong duality for minimum volume covering ellipsoid

• primal problem
minimize − log detX

subject to aT
i Xai ≤ 1 i = 1, . . . ,m

where D = Sn
++

• dual problem

maximize

{
log det(

∑m
i=1 λiaia

T
i ) − 1Tλ + n

∑m
i=1 λiaia

T
i ≻ 0

−∞ otherwise

subject to λ ⪰ 0

(refer to page 87 for Lagrange dual function)

• X = αI with large enough α > 0 satisfies primal’s constraints, hence Slater’s

condition always holds, thus, strong duality always holds, i.e., (d∗ = p∗ ∈ R) or

(d∗ = p∗ = −∞)

• in fact, R(a1, . . . , am) = Rn if and only if d∗ = p∗ ∈ Rn
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Strong duality for trust region nonconvex quadratic problems

• one of rare occasions in which strong duality obtains for nonconvex problems

• primal problem
minimize xTAx + 2bTx

subject to xTx ≤ 1

where A ∈ Sn, A ̸∈ Sn
+, and b ∈ Rn

• Lagrange dual problem (page 97)

maximize −bT (A + λI)†b − λ

subject to A + λI ⪰ 0, b ∈ R(A + λI)

• strong duality always holds and d∗ = p∗ ∈ R (since dual problem is feasible - large

enough λ satisfies dual constraints)

• in fact, exists stronger result - strong dual holds for optimization problem with quadratic

objective and one quadratic inequality constraint, provided Slater’s condition holds
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Matrix games using mixed strategies

• matrix game - consider game with two players A and B

– player A makes choice 1 ≤ a ≤ n, player B makes choice 1 ≤ b ≤ m, then player

A makes payment of Pab to player B

– matrix P ∈ Rn×m, called payoff matrix

– player A tries to pay as little as possible & player B tries to received as much as

possible

– players use randomized or mixed strategies, i.e., each player makes choice randomly

and independently of other player’s choice according to probability distributions

Prob(a = i) = ui i = 1 ≤ i ≤ n Prob(b = j) = vj i = 1 ≤ j ≤ m

• expected payoff (from player A to player B)∑
i

∑
j

uivjPij = u
T
Pv
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• assume player A’s strategy is known to play B

– player B will choose v to maximize uTPv

sup{uT
Pv|v ⪰ 0, 1

T
v = 1} = max

1≤j≤m
(P

T
u)j

– player A (assuming that player B will employ above strategy to maximize payment)

will choose u to minimize payment

minimize max1≤j≤m(P Tu)j
subject to u ⪰ 0 1Tu = 1

• assume player B’s strategy is known to play A

– then player B will do same to maximize payment (assuming that player A will employ

such strategy to minimize payment)

maximize min1≤i≤n(Pv)i
subject to v ⪰ 0 1Tv = 1
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Strong duality for matrix games using mixed strategies

• in matrix game, can guess in frist came, player B has advantage over player A because

A’s strategy’s exposed to B, and vice versa, hence optimal value of first problem is

greater than that of second problem

• surprising, no one has advantage over the other, i.e., optimal values of two problems

are same - will show this

• first observe both problems are (convex) piecewise-linear optimization problems

• formulate first problem as LP

minimize t

subject to u ⪰ 0 1Tu = 1 P Tu ⪯ t1

– Lagrangian

L(u, t, λ1, λ2, ν) = ν + (1 − 1
T
λ1)t + (Pλ1 − ν1 − λ2)

T
u
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– Lagrange dual function

g(λ1, λ2, ν) =

{
ν 1Tλ1 = 1 & Pλ1 − ν1 = λ2

−∞ otherwise

• Lagrange dual problem

maximize ν

subject to 1Tλ1 = 1 Pλ1 − ν1 = λ2

λ1 ⪰ 0 λ2 ⪰ 0

• eliminating λ2 gives below Lagrange dual problem

maximize ν

subject to λ1 ⪰ 0 1Tλ1 = 1 Pλ1 ⪰ ν1

which is equivalent to second problem in matrix game

• weak duality confirms “player who knows other player’s strategy has advantage or on

par”
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• moreoever, primal problem satisfies Slater’s condition, hence strong duality always holds,

and dual is feasible, hence d∗ = p∗ ∈ R, i.e., regardless of who knows other player’s

strategy, no player has advantage

Searching for Universal Truths - Convex Optimization - Duality 111



Sunghee Yun July 14, 2025

Geometric interpretation of duality

• assume (not necessarily convex) optimization problem in Definition 38

• define graph

G = {(q(x), h(x), f(x))|x ∈ D} ⊂ Rm × Rp × R

• for every λ ⪰ 0 and ν

p
∗
= inf{t|(u, v, t) ∈ G, u ⪯ 0, v = 0}

≥ inf{t + λ
T
u + ν

T
v|(u, v, t) ∈ G, u ⪯ 0, v = 0}

≥ inf{t + λ
T
u + ν

T
v|(u, v, t) ∈ G} = g(λ, ν)

where second inequality comes from {(u, v, t)|(u, v, t) ∈ G, u ⪯ 0, v = 0} ⊂ G

• above establishes weak duality using graph

• last equality implies that

(λ, ν, 1)
T
(u, v, t) ≥ g(λ, ν)
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hence if g(λ, ν) > −∞, (λ, ν, 1) and g(λ, ν) define nonvertical supporting

hyperplane for G - nonvertical because third component is nonzero

• the figure shows G as area inside closed curve contained in Rm×Rp×R where m = 1

and p = 0 as primal optimal value p∗ and supporting hyperplane λu + t = g(λ)

p∗t
hhhhhhhhhhhhhhhhhhhhhhhhhhhh

λu + t = g(λ)

u

t

G
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• the figure shows three hyperplanes determined by three values for λ, one of which λ∗ is

optimal solution for dual problem

p∗t
hhhhhhhhhhhhhhhhhhhhhhhhhhhh

λ1u + t = g(λ1)

u

t

G

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

HHH
HHH

HHH
HHH

HHH
HHH

HHH
HHH

HHHH

λ2u + t = g(λ2)

λ∗u + t = g(λ∗)

tg(λ∗) = d∗ tg(λ1)tg(λ2)
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Epigraph interpretation of duality

• define extended graph over G - sort of epigraph of G

H = G + Rm
+ × {0} × R+

= {(u, v, t)|x ∈ D, q(x) ⪯ u, h(x) = v, f(x) ≤ t}

• if λ ⪰ 0, g(λ, ν) = inf{(λ, ν, 1)T (u, v, t)|(u, v, t) ∈ H}, thus

(λ, ν, 1)
T
(u, v, t) ≥ g(λ, ν)

defines nonvertical supporting hyperplane for H

• now p∗ = inf{t|(0, 0, t) ∈ H}, hence (0, 0, p∗) ∈ bdH, hence

p
∗
= (λ, ν, 1)

T
(0, 0, p

∗
) ≥ g(λ, ν)

• once again establishes weak duality

• the figure shows epigraph interpretation
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p∗t
hhhhhhhhhhhhhhhhhhhhhhhhhhhh

λu + t = g(λ)

u

t

G

H
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Proof of strong duality under constraint qualification

• now we show proof of strong duality - this is one of rare cases where proof is shown

in main slides instead of “selected proofs” section like Galois theory since - (I hope)

it will give you some good intuition about why strong duality holds for (most) convex

optimization problems

• assume Slater’s condition holds, i.e., f and q are convex, h is affine, and exists x ∈ D
such that q(x) ≺ 0 and h(x) = 0

• further assume D has interior (hence, relintD = D◦ and rankA = p

• assume p∗ ∈ R - since exists feasible x, the other possibility is p∗ = −∞, but then,

d∗ = −∞, hence strong duality holds

• H is convex (proof can be found in Proof 6)

• now define

B = {(0, 0, s) ∈ Rm × Rp × R|s < p
∗}

• thenB∩H = ∅, hence Theorem 1 implies exists separable hyperplane with (λ̃, ν̃, µ) ̸=
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0 and α such that

(u, v, t) ∈ H ⇒ λ̃
T
u + ν̃

T
v + µt ≥ α

(u, v, t) ∈ B ⇒ λ̃
T
u + ν̃

T
v + µt ≤ α

• then λ̃ ⪰ 0 & µ ≥ 0 - assume µ > 0

– can prove when µ = 0, but kind of tedius, plus, whole purpose is provide good

intuition, so will not do it here

• above second inequality implies µp∗ ≤ α and for some x ∈ D

µL(x, λ̃/µ, ν̃/µ) = λ̃
T
q(x) + ν̃

T
h(x) + µf(x) ≥ α ≥ µp

∗

thus,

g(λ̃/µ, ν̃/µ) ≥ p
∗

• finally, weak duality implies

g(λ, ν) = p
∗

where λ = λ̃/µ & ν = ν̃/µ
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Max-min characterization of weak and strong dualities

• note

sup
λ≥0,ν

L(x, λ, ν) = sup
λ≥0,ν

(
f(x) + λ

T
q(x) + ν

T
h(x)

)
=

{
f(x) x ∈ F
∞ otherwise

• thus p∗ = infx∈D supλ⪰0,ν L(x, λ, ν) whereas d∗ = supλ⪰0,ν infx∈D L(x, λ, ν)

• weak duality means

sup
λ⪰0,ν

inf
x∈D

L(x, λ, ν) ≤ inf
x∈D

sup
λ⪰0,ν

L(x, λ, ν)

• strong duality means

sup
λ⪰0,ν

inf
x∈D

L(x, λ, ν) = inf
x∈D

sup
λ⪰0,ν

L(x, λ, ν)
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Max-min inequality

• indeed, inequality supλ⪰0 infx∈D L(x, λ, ν) ≤ infx∈D supλ⪰0 L(x, λ, ν) holds for

general case

Inequality 2. [max-min inequality] for f : X × Y → R

sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y)

(proof can be found in Proof 5)

Definition 60. [strong max-min property] if below equality holds, we say f (and X

and Y ) satisfies strong max-min property or saddle point property

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y)

• this happens, e.g., X = D, Y = Rm
+ × Rp, f is Lagrangian of optimization problem

(in Definition 38) for which strong duality holds
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Saddle-points

Definition 61. [saddle-points] for f : X × Y → R, pair x∗ ∈ X and y∗ ∈ Y such

that

(∀x ∈ X, y ∈ Y )
(
f(x

∗
, y) ≤ f(x

∗
, y

∗
) ≤ f(x, y

∗
)
)

called saddle-point for f (and X and Y )

• if assumption in Definition 61 holds, x∗ minimizes f(x, y∗) over X and y∗ maximizes

f(x∗, y) over Y

sup
y∈Y

f(x
∗
, y) = f(x

∗
, y

∗
) = inf

x∈X
f(x, y

∗
)

– strong max-min property (in Definition 60) holds with f(x∗, y∗) as common value
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Saddle-point interpretation of strong duality

• for primal optimum x∗ and dual optimum (λ∗, ν∗)

g(λ
∗
, ν

∗
) ≤ L(x

∗
, λ

∗
, ν

∗
) ≤ f(x

∗
)

• if strong duality holds, for every x ∈ D, λ ⪰ 0, and ν

L(x
∗
, λ, ν) ≤ f(x

∗
) = L(x

∗
, λ

∗
, ν

∗
) = g(λ

∗
, ν

∗
) ≤ L(x, λ

∗
, ν

∗
)

– thus x∗ and (λ∗, ν∗) form saddle-point of Lagrangian

• conversely, if x̃ and (λ̃, ν̃) are saddle-point of Lagrangian, i.e., for every x ∈ D,

λ ⪰ 0, and ν

L(x̃, λ, ν) ≤ L(x̃, λ̃, ν̃) ≤ L(x, λ̃, ν̃)

– hence g(λ̃, ν̃) = infx∈D L(x, λ̃, ν̃) = L(x̃, λ̃, ν̃) = supλ⪰0,ν L(x̃, λ, ν) =

f(x̃), thus g(λ∗, ν∗) ≤ g(λ̃, ν̃) & f(x̃) ≤ f(x∗)

– thus x̃ and (λ̃, ν̃) are primal and dual optimal
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Game interpretation

• assume two players play zero-sum game with payment function f : X ×Y → R where

player A pays player B amount equal to f(x, y) when player A chooses x and player

B chooses y

• player A will try to minimize f(x, y) and player B will try to maximize f(x, y)

• assume player A chooses first then player B chooses after learning opponent’s choice

– if player A chooses x, player B will choose argsupy∈Y f(x, y)

– knowing that, player A will first choose arginfx∈X supy∈Y f(x, y)

– hence payment will be infx∈X supy∈Y f(x, y)

• if player B makes her choise first, opposite happens, i.e., payment will be

supy∈Y infx∈X f(x, y)
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• max-min inequality of Ineq 2 says

sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y)

i.e., whowever chooses later has advantage, which is similar or rather same as matrix

games using mixed strategies on page 107

• saddle-point for f (and X and Y ), (x∗, y∗), called solution of game - x∗ is optimal

choice for player A and x∗ is optimal choice for player B
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Game interpretation for weak and strong dualities

• assume payment function in zero-sum game on page 124 is Lagrangian of optimization

problem in Definition 38

• assume that X = X and Y = Rn
+ × Rp

• if player A chooses first, knowing that player B will choose argsup(λ,ν)∈Y L(x, λ, ν),

she will choose x∗ = arginfx∈X sup(λ,ν)∈Y L(x, λ, ν)

• likewise, player B will choose (λ∗, ν∗) = argsup(λ,ν)∈Y infx∈X L(x, λ, ν)

• optimal dualtiy gap p∗ − d∗ equals to advantage player who goes second has

• if strong dualtiy holds, (x∗, λ∗, ν∗) is solution of game, in which case no one has

advantage
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Certificate of suboptimality

• dual feasible point (λ, ν) degree of suboptimality of current solution

• assume x is feasible solution, then

f(x) − p
∗ ≤ f(x) − g(λ, ν)

guarantees that f(x) is no further than ϵ = f(x)− g(λ, ν) from optimal point point

x∗ (even though we do not know optimal solution)

• for this reason, (λ, ν), called certificate of suboptimality

• x is ϵ-suboptimal for primal problem and (λ, ν) is ϵ-suboptimal for dual problem

• strong duality means we could find arbitrarily small certificate of suboptimality
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Complementary slackness

• assume strong duality holds for optimization problem in Definition 38 and assume x∗ is

primal optimum and (λ∗, ν∗) is dual optimum, then

f(x
∗
) = L(x

∗
, λ

∗
, ν

∗
) = f(x

∗
) + λ

∗T
q(x

∗
) + ν

∗T
h(x

∗
)

• h(x∗) = 0 implies λ∗Tq(x∗) = 0

• then λ∗ ⪰ 0 and q(x∗) ⪯ 0 imply

λ
∗
iqi(x

∗
) = 0 i = 1, . . . ,m

Proposition 10. [complementary slackness] when strong duality holds, for primal and

dual optimal points x∗ and (λ∗, ν)

λ
∗
iqi(x

∗
) = 0 i = 1, . . . ,m

this property, called complementary slackness

Searching for Universal Truths - Convex Optimization - Duality 128



Sunghee Yun July 14, 2025

KKT optimality conditions

Definition 62. [KKT optimality conditions] for optimization problem in Definition 38

where f , q, and h are all differentiable, below conditions for x ∈ D and (λ, ν) ∈ Rm×Rp

q(x) ⪯ 0 - primal feasibility

h(x) = 0 - primal feasibility

λ ⪰ 0 - dual feasibility

λ
T
q(x) = 0 - complementary slackness

∇xL(x, λ, ν) = 0 - vanishing gradient of Lagrangian

called Karush-Kuhn-Tucker (KKT) optimality conditions
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KKT necessary for optimality with strong duality

Theorem 9. [KKT necessary for optimality with strong duality] for optimization problem

in Definition 38 where f , q, and h are all differentiable, if strong duality holds, primal and

dual optimal solutions x∗ and (λ∗, ν) satisfy KKT optimality conditions (in Definition 62),

i.e., for every optimization problem

- when strong duality holds, KKT optimality conditions are necessary for primal and

dual optimality

or equivalently

- primal and dual optimality with strong duality imply KKT optimality conditions
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KKT and convexity sufficient for optimality with strong duality

• assume convex optimization problem where f , q, and h are all differentiable and x ∈ D
and (λ, ν) ∈ Rm × Rp satisfying KKT conditions, i.e.

q(x) ⪯ 0, h(x) = 0, λ ⪰ 0, λ
T
q(x) = 0, ∇xL(x, λ, ν) = 0

• since L(x, λ, ν) is convex for λ ⪰ 0, i.e., each of f(x), λTq(x), and νTh(x) is

convex, vanishing gradient implies x achieves infimum for Lagrangian, hence

g(λ, ν) = L(x, λ, ν) = f(x) + λ
T
q(x) + ν

T
h(x) = f(x)

• thus, strong duality holds, i.e., x and (λ, ν) are primal and dual optimal solutions with

zero duality gap
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Theorem 10. [KKT and convexity sufficient for optimality with strong duality] for

convex optimization problem in Definition 42 where f , q, and h are all differentiable, if

x ∈ D and (λ, ν) ∈ Rm × Rp satisfy KKT optimality conditions (in Definition 62), they

are primal and dual optimal solutions having zero duality gap i.e.

- for convex optimization problem, KKT optimality conditions are sufficient for primal

and dual optimality with strong duality

or equivalently

- KKT optimality conditions and convexity imply primal and dual optimality and strong

duality

• Theorem 9 together with Theorem 10 implies that for convex optimization problem

– KKT optimality conditions are necessary and sufficient for primal and dual optimality

with strong duality
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Solving primal problems via dual problems

• when strong duality holds, can retrieve primal optimum from dual optimum since primal

optimal solution is minimize of

L(x, λ
∗
, ν

∗
)

where (λ∗, ν∗) is dual optimum

• example - entropy maximization (D = Rn
++)

– primal problem - min. f(x) =
∑n

i=1 xi log xi s.t. Ax ⪯ b,
∑

x = 1

– dual problem - max. −bTλ − ν − exp(−ν − 1)
∑

exp(ATλ) s.t. λ ⪰ 0

– provided dual optimum (λ∗, ν∗), primal optimum is

x
∗
= argmin

x∈D

(∑
xi log xi + λ

∗T
(Ax − b) + ν

∗
(1

T
x − 1)

)
– ∇xL(x, λ∗, ν∗) = log x + ATλ∗ + (1 + ν∗)1, hence

x
∗
= exp(−(A

T
λ
∗
+ (1 + ν

∗
)1))
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Perturbed optimization problems

• original problem in Definition 38 with perturbed constraints

minimize f(x)

subject to q(x) ⪯ u

h(x) = v

where u ∈ Rm and v ∈ Rp

• define p∗(u, v) as optimal value of above perturbed problem, i.e.

p
∗
(u, v) = inf{f(x)|x ∈ D, q(x) ⪯ u, h(x) = v}

which is convex when problem is convex optimization problem (proof can be found in

Proof 6) - note p∗(0, 0) = p∗

• assume and dual optimum (λ∗, ν∗), if strong duality holds, for every feasible x for

perturbed problem

p
∗
(0, 0) = g(λ

∗
, ν

∗
) ≤ f(x) + λ

∗T
q(x) + ν

∗T
h(x) ≤ f(x) + λ

∗T
u + ν

∗T
v
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thus

p
∗
(0, 0) ≤ p

∗
(u, v) + λ

∗T
u + ν

∗T
v

hence

p
∗
(u, v) ≥ p

∗
(0, 0) − λ

∗T
u − ν

∗T
v

• the figure shows this for optimization problem with one inequality constraint and no

equality constraint

u
u = 0

p∗(u)

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@

p∗(0) − λ∗Tu − ν∗Tv
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Global sensitivity analysis via perturbed problems

• recall

p
∗
(u, v) ≥ p

∗
(0, 0) − λ

∗T
u − ν

∗T
v

• interpretations

– if λ∗
i is large, when i-th inequality constraint is tightened, optimal value increases a

lot

– if λ∗
i is small, when i-th inequality constraint is relaxed, optimal value decreases not

a lot

– if |ν∗
i | is large, reducing vi when ν∗

i > 0 or increasing vi when ν∗
i < 0 increases

optimval value a lot

– if |ν∗
i | is small, increasing vi when ν∗

i > 0 or decreasing vi when ν∗
i < 0 decreases

optimval value not a lot

• it only gives lower bounds - will explore local behavior
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Local sensitivity analysis via perturbed problems

• assume p∗(u, v) is differentiable with respect to u and v, i.e., ∇(u,v)p
∗(u, v) exist

– then

∂

∂ui

p
∗
(0, 0) = lim

h→0+

p∗(hei, 0) − p∗(0, 0)

h
≥ lim

h→0+

−λ∗T (hei)

h
= −λi

and

∂

∂ui

p
∗
(0, 0) = lim

h→0−

p∗(hei, 0) − p∗(0, 0)

h
≤ lim

h→0−

−λ∗T (hei)

h
= −λi

– obtain same result for vi, hence

∇u p
∗
(0, 0) = −λ ∇v p

∗
(0, 0) = −ν

• so larger λi or |νi| means larger change in optimal value of perturbed problem when

ui or vi change a bit and vice versa quantitatively, - λi an νi provide exact ratio and

direction
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Different dual problems for equivalent optimization problems - 1

• introducing new variables and equality constraints for unconstrained problems

– unconstrained optimization problem

minimize f(Ax + b)

- dual Lagrange function is g = p∗, hence strong duality holds, which, however,

does not provide useful information

– reformulate as equivalent optimization problem

minimize f(y)

subject to Ax + b = y

- Lagrangian - L(x, y, ν) = f(y) + νT (Ax + b − y)

- Lagrange dual function - g(ν) = −I(ATν = 0) + bTν − f∗(ν)

- dual optimization problem

maximize bTν − f∗(ν)

subject to ATν = 0
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• examples

– unconstrained geometric problem

minimize log
(∑m

i=1 exp(a
T
i x + bi)

)
- reformulation

minimize log (
∑m

i=1 exp(yi))

subject to Ax + b = y

- dual optimization problem

maximize bTν −
∑m

i=1 νi log νi

subject to 1Tν = 1

ATν = 0

ν ⪰ 0

which is entropy maximization problem

– norm minimization problem

minimize ∥Ax − b∥
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- reformulation
minimize ∥y∥
subject to Ax − b = y

- dual optimization problem

maximize bTν

subject to ∥ν∥∗ ≤ 1

ATν = 0
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Different dual problems for equivalent optimization problems - 2

• introducing new variables and equality constraints for constrained problems

– inequality constrained optimization problem

minimize f0(A0x + b0)

subject to fi(Aix + bi) ≤ 0 i = 1, . . . ,m

– reformulation
minimize f0(y0)

subject to fi(yi) ≤ 0 i = 1, . . . ,m

Aix + bi = yi i = 0, . . . ,m

– dual optimization problem

maximize
∑m

i=0 ν
T
i bi − f∗

0 (ν0) −
∑m

i=1 λif
∗
i (νi/λi)

subject to
∑m

i=0 A
T
i νi = 0

λ ⪰ 0
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• examples

– inequality constrained geometric program

minimize log (
∑

exp(A0x + b0))

subject to log (
∑

exp(Aix + bi)) ≤ 0 i = 1, . . . ,m

where Ai ∈ RKi×n and exp(z) := (exp(z1), . . . , exp(zk))) ∈ Rn and
∑

z :=∑k
i=1 zi ∈ R for z ∈ Rk

- reformulation

minimize log (
∑

exp(y0))

subject to log (
∑

exp(yi)) ≤ 0 i = 1, . . . ,m

Aix + bi = yi i = 0, . . . ,m
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- dual optimization problem

maximize
∑m

i=0 b
T
i νi − νT

0 log(ν0) −
∑m

i=1 ν
T
i log(νi/λi)

subject to νi ⪰ 0 i = 0, . . . ,m

1Tν0 = 1, 1Tνi = λi i = 1, . . . ,m

λi ≥ 0 i = 1, . . . ,m∑m
i=0 A

T
i νi = 0

where and log(z) := (log(z1), . . . , log(zk))) ∈ Rn for z ∈ Rk
++

- simplified dual optimization problem

maximize
∑m

i=0 b
T
i νi − νT

0 log(ν0) −
∑m

i=1 ν
T
i log(νi/1

Tνi)

subject to νi ⪰ 0 i = 0, . . . ,m

1Tν0 = 1∑m
i=0 A

T
i νi = 0
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Different dual problems for equivalent optimization problems - 3

• transforming objectives

– norm minimization problem

minimize ∥Ax − b∥

– reformulation
minimize (1/2)∥y∥2

subject to Ax − b = y

– dual optimization problem

maximize −(1/2)∥ν∥2
∗ + bTν

subject to ATν = 0
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Different dual problems for equivalent optimization problems - 4

• making contraints implicit

– LP with box constraints

minimize cTx

subject to Ax = b, l ⪯ x ⪯ u

– dual optimization problem

maximize −bTν − λT
1 u + λT

2 l

subject to ATν + λ1 − λ2 + c = 0, λ1 ⪰ 0, λ2 ⪰ 0

– reformulation
minimize cTx + I(l ⪯ x ⪯ u)

subject to Ax = b

– dual optimization problem for reformulated primal problem

maximize −bTν − uT (ATν + c)− + lT (ATν + c)+
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Weak alternatives

Theorem 11. [weak alternatives of two systems] for q : Q → Rm & h : H → Rp

where Q and H are subsets of common set X, which is subset of Banach space, assuming

D = Q ∩ H ̸= ∅, and λ ∈ Rm & ν ∈ Rp, below two systems of inequalities and

equalities are weak alternatives, i.e., at most one of them is feasible

q(x) ⪯ 0 h(x) = 0

and

λ ⪰ 0 inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
> 0

• can prove Theorem 11 using duality of optimization problems

• consider primal and dual problems

– primal problem
minimize 0

subject to q(x) ⪯ 0

h(x) = 0
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– dual problem
maximize g(λ, ν)

subject to λ ⪰ 0

where

g(λ, ν) = inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
• then p∗, d∗ ∈ {0,∞}
• now assume first system of Theorem 11 is feasible, then p∗ = 0, hence weak duality

applies d∗ = 0, thus there exist no λ and ν such that λ ⪰ 0 and g(λ, ν) > 0

i.e., second system is infeasible, since otherwise there exist λ and ν making g(λ, ν)

arbitrarily large; if λ̃ ⪰ 0 and ν̃ satisfy g(λ, ν) > 0, g(αλ̃, αν̃) = αg(λ̃, ν̃) goes to

∞ when α → ∞
• assume second system is feasible, then g(λ, ν) can be arbitrarily large for above

reasons, thus d∗ = ∞, hence weak duality implies p∗ = ∞, which implies first system

is infeasible

• therefore two systems are weak alternatives; at most one of them is feasible

(actually, not hard to prove it without using weak duality)
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Weak alternatives with strict inequalities

Theorem 12. [weak alternatives of two systems with strict inequalities] for q :

Q → Rm & h : H → Rp where Q and H are subsets of common set X, which

is subset of Banach space, assuming D = Q ∩ H ̸= ∅, and λ ∈ Rm & ν ∈ Rp, below

two systems of inequalities and equalities are weak alternatives, i.e., at most one of them

is feasible

q(x) ≺ 0 h(x) = 0

and

λ ⪰ 0 λ ̸= 0 inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
≥ 0
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Strong alternatives

Theorem 13. [strong alternatives of two systems] for convex q : Q → Rm & affine

h : H → Rp where Q and H are subsets Rn assuming D = Q ∩ H ̸= ∅ and λ ∈ Rm

& ν ∈ Rp, if exists x ∈ relintD with h(x) = 0, below two systems of inequalities and

equalities are strong alternatives, i.e., exactly one of them is feasible

q(x) ⪯ 0 h(x) = 0

and

λ ⪰ 0 inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
> 0
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Strong alternatives with strict inequalities

Theorem 14. [strong alternatives of two systems with strict inequalities] for convex

q : Q → Rm & affine h : H → Rp where Q and H are subsets Rn assuming

D = Q∩H ̸= ∅ and λ ∈ Rm & ν ∈ Rp, if exists x ∈ relintD with h(x) = 0, below

two systems of inequalities and equalities are strong alternatives, i.e., exactly one of them

is feasible

q(x) ≺ 0 h(x) = 0

and

λ ⪰ 0 λ ̸= 0 inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
≥ 0

• proof - consider convex optimization problem and its dual

– primal problem
minimize s

subject to q(x) − s1 ⪯ 0

h(x) = 0
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– dual problem
maximize g(λ, ν)

subject to λ ⪰ 0 1Tλ = 1

where g(λ, ν) = infx∈D
(
λTq(x) + νTh(x)

)
• first observe Slater’s condition holds for primal problem since by hypothesis of

Theorem 14, exists y ∈ relintD with h(y) = 0, hence (y, q(y)) ∈ Q × R is

primal feasible satisifying Slater’s condition

• hence Slater’s theorem (Theorem 8) implies d∗ = p∗

• assume first system is feasible, then primal problem is strictly feasible and d∗ = p∗ < 0,

hence second system infeasible since otherwise feasible point for second system is feasible

point of dual problem, hence d∗ ≥ 0

• assume first system is infeasible, then d∗ = p∗ ≥ 0, hence Slater’s theorem (Theorem 8)

implies exists dual optimal (λ∗, ν∗) (whether or not d∗ = ∞), hence (λ∗, ν∗) is feasible

point for second system of Theorem 14

• therefore two systems are strong alternatives; each is feasible if and only if the other is

infeasible
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Strong alternatives for linear inequalities

• dual function of feasibility problem for Ax ⪯ b is

g(λ) = inf
x∈Rn

λ
T
(Ax − b) =

{
−bTλ ATλ = 0

−∞ otherwise

• hence alternative system is λ ⪰ 0, bTλ < 0, ATλ = 0

• thus Theorem 13 implies below systems are strong alternatives

Ax ⪯ b & λ ⪰ 0 b
T
λ < 0 A

T
λ = 0

• similarly alternative system is λ ⪰ 0, bTλ < 0, ATλ = 0 and Theorem 13 implies

below systems are strong alternatives

Ax ≺ b & λ ⪰ 0 λ ̸= 0 b
T
λ ≤ 0 A

T
λ = 0
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Farkas’ lemma

Theorem 15. [Farkas’ lemma] below systems of inequalities and equalities are strong

alternatives

Ax ⪯ 0 c
T
x < 0 & A

T
y + c = 0 y ⪰ 0

• will prove Theorem 15 using LP and its dual

• consider LP
(
minimize cTx subject to Ax ⪯ 0

)
• dual function is g(y) = inf

x∈Rn
(
cTx + yTAx

)
=

{
0 ATy + c = 0

−∞ otherwise

• hence dual problem is
(
maximize 0 subject to ATy + c = 0, y ⪰ 0

)
• assume first system is feasible, then homogeneity of primal problem implies p∗ = −∞,

thus d∗, i.e., dual is infeasible, hence second system is infeasible

• assume first system is infeasible, since primal is always feasible, p∗ = 0, hence strong

duality implies d∗ = 0, thus second system is feasible
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Optimization problems with generalized inequalities

Definition 63. [optimization problems with generalized inequalities] for f : F →
R, q : Q →×m

i=1
Rki, h : H → Rp where F , Q, and H are subsets of common set X

minimize f(x)

subject to q(x) ⪯K 0

h(x) = 0

called optimization problem with generalized inequalities where K =×Ki is proper cone

with m proper cones K1 ⊂ Rk1, . . . , Kn ⊂ Rkm

- every terminology and associated notation is same as of optimization problem in

Definition 38 such as objective & inequality & equality contraint functions, domain of

optimization problem D, feasible set F , optimal value p∗

- note that when Ki = R+ (hence K = Rm
+ ), above optimization problem coincides

with that in Definition 38, i.e., optimization problems with generalized inequalities

subsume (normal) optimization problems

Searching for Universal Truths - Convex Optimization - Convex Optimization with Generalized Inequalities 156



Sunghee Yun July 14, 2025

Lagrangian for generalized inequalities

Definition 64. [Lagrangian for generalized inequalities] for optimization problem in

Definition 63 with nonempty domain D, function L : D ××m

i=1
Rki × Rp → R defined

by

L(x, λ, ν) = f(x) + λ
T
q(x) + ν

T
h(x)

called Lagrangian associated with the optimization problem where

- every terminology and associated notation is same as of optimization problem in

Definition 54 such as dual variables or Lagrange multipliers λ and ν.

- Lagrangian for generalized inequalities subsumes (normal) Lagrangian (Definition 54)
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Lagrange dual functions for generalized inequalities
Definition 65. [Lagrange dual functions for generalized inequalities] for optimization

problem in Definition 63 for which Lagrangian is defined, function g :×Rki × Rp →
R ∪ {−∞} defined by

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f(x) + λ

T
q(x) + ν

T
h(x)

)
called Lagrange dual function or just dual function associated with optimization problem

- Lagrange dual functions for generalized inequalities subsume (normal) Lagrange dual

functions (Definition 55)

• g is concave function

• g(λ, ν) is lower bound for optimal value of associated optimization problem i.e.,

g(λ, ν) ≤ p
∗

for every λ ⪰∗
K 0 where K∗ denotes dual cone of K, i.e., K∗ = ×K∗

i where

K∗
i ⊂ Rki is dual cone of Ki ⊂ Rki

• (λ, ν) with λ ⪰K 0 and g(λ, ν) > −∞ said to be dual feasible
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Lagrange dual problems for generalized inequalities

Definition 66. [Lagrange dual problems for generalized inequalities] for optimization

problem in Definition 63, optimization problem

maximize g(λ, ν)

subject to λ ⪰K∗ 0

where K∗ denotes dual cone of K, i.e., K∗ =×K∗
i where K∗

i ⊂ Rki is dual cone of

Ki ⊂ Rki, called Lagrange dual problem associated with problem in Definition 63

- every terminology and related notation is same as that in Definition 56 such as dual

feasibility, dual optimal value d∗, optimal Lagrange multipliers (λ∗, ν∗)

- Lagrange dual problems for generalized inequalities subsume (normal) Lagrange dual

problems (Definition 56)

• Lagrange dual problem in Definition 66 is convex optimization since g(λ, ν) is convex
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Slater’s theorem for generalized inequalities

Theorem 16. [Slater’s theorem for generalized inequalities] if optimization problem

in Definition 63 is convex, i.e., f is convex, q is K-convex (i.e., every qi is Ki-convex)

(Definition 36), and exists feasible x ∈ D contained in relintD such that

q(x) ≺K 0 h(x) = 0

strong duality holds (and dual optimal value is attained when d∗ > −∞)

- such condition, called Slater’s condition

- such point, (sometimes) said to be strictly feasible

- note resemblance with Slater’s theorem in Theorem 8
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Duality for SDP

• (inequality form) SDP

minimize cTx

subject to x1F1 + · · · + xnFn + G ⪯ 0

where F1, . . . , Fn, G ∈ Sk and K = Sk
+

• Lagrangian

L(x, Z) = c
T
x+ (x1F1 + · · ·+ xnFn +G) •Z =

∑
xi(Fi •Z + ci) +G •Z

where X • Y = TrXY for X,Y ∈ Sk
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• Lagrange dual function

g(Z) = inf
x∈Rn

L(x, Z) =

{
G • Z Fi • Z + ci = 0 i = 1, . . . , n

−∞ otherwise

• Lagrange dual problem

maximize G • Z

subject to Fi • Z + ci = 0 i = 1, . . . , n

Z ⪰ 0

where fact that Sk
+ is self-dual, i.e., K∗ = K

• Slater’s theorem (Theorem 16) implies if primal problem is strictly feasible, i.e., exists

x ∈ Rn such that
∑

xiFi + G ≺ 0, strong duality holds
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KKT optimality conditions for generalized inequalities

Definition 67. [KKT optimality conditions for generalized inequalities] for optimization

problem in Definition 63 where f , q, and h are all differentiable, below conditions for

x ∈ D and (λ, ν) ∈×Rki × Rp

q(x) ⪯K 0 - primal feasibility

h(x) = 0 - primal feasibility

λ ⪰K∗ 0 - dual feasibility

λ
T
q(x) = 0 - complementary slackness

∇xL(x, λ, ν) = 0 - vanishing gradient of Lagrangian

called Karush-Kuhn-Tucker (KKT) optimality conditions

- note KKT optimality conditions for generalized inequalities subsume (normal) KKT

optimality conditions (Definition 62)
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KKT conditions and optimalities for generalized inequalities

• for every optimization problem with generalized inequalities (Definition 63), every

statement for normal optimization problem (Definition 38), regarding relations among

KKT conditions, optimality, primal and dual optimality, and strong duality, is exactly

the same

– for every optimization problem with generalized inequalities (Definition 63)

- if strong duality holds, primal and dual optimal points satisfy KKT optimality

conditions in Definition 67 (same as Theorem 9)

- if optimization problem is convex and primal and dual solutions satisfy KKT

optimality conditions in Definition 67, the solutions are optimal with strong duality

(same as Theorem 10)

- therefore, for convex optimization problem, KKT optimality conditions are necessary

and sufficient for primal and dual optimality with strong duality
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Perturbation and sensitivity analysis for generalized inequalities

• original problem in Definition 63 with perturbed constraints

minimize f(x)

subject to q(x) ⪯K u

h(x) = v

where u ∈ Rm and v ∈ Rp

• define p∗(u, v) = p∗(u, v) = inf{f(x)|x ∈ D, q(x) ⪯ u, h(x) = v}, which is

convex when problem is convex optimization problem - note p∗(0, 0) = p∗

• as for normal optimization problem case (page 134), if and dual optimum (λ∗, ν∗), if

strong duality holds,

p
∗
(u, v) ≥ p

∗
(0, 0) − λ

∗T
u − ν

∗T
v

and

∇u p
∗
(0, 0) = −λ ∇v p

∗
(0, 0) = −ν
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Sensitivity analysis for SDP

• assume inequality form SDP and its dual problem on page 161 and page 162

• consider perturbed SDP

minimize cTx

subject to x1F1 + · · · + xnFn + G ⪯ U

for some U ∈ Sk

– define p∗ : Sk → R such that p∗(U) is optimal value of above problem

• assume x∗ ∈ Rn and Z∗ ∈ Sk
+ are primal and dual optimum with zero dualty gap

• then

p
∗
(U) ≥ p

∗ − Z
∗ • U

• if ∇Up
∗ exists at U = 0

∇Up
∗
(0) = −Z

∗
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Weak alternatives for generalized inequalities

Theorem 17. [weak alternatives for generalized inequalities] for q : Q → ×Rki

& h : H → Rp where Q and H are subsets of common Banach space assuming

D = Q ∩ H ̸= ∅, and λ ∈×Rki & ν ∈ Rp, below pairs of systems are strong

alternatives

q(x) ⪯K 0 h(x) = 0 & λ ⪰K∗ 0 g(λ, ν) > 0

q(x) ≺K 0 h(x) = 0 & λ ⪰K∗ 0 λ ̸= 0 g(λ, ν) ≥ 0

where K =×Ki with proper cones Ki ⊂ Rki and function g :×Rki × Rp → R
defined by

g(λ, ν) = inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
note this theorem subsumes Theorem 11 and Theorem 12
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Strong alternatives for generalized inequalities

Theorem 18. [strong alternatives for generalized inequalities] for K-convex q :

Q → ×Rki & affine h : H → Rp where Q and H are subsets of Rn assuming

D = Q ∩ H ̸= ∅, and λ ∈×Rki & ν ∈ Rp, if exists x ∈ relintD with h(x) = 0,

below pairs of systems are strong alternatives

q(x) ⪯K 0 h(x) = 0 & λ ⪰K∗ 0 g(λ, ν) > 0

q(x) ≺K 0 h(x) = 0 & λ ⪰K∗ 0 λ ̸= 0 g(λ, ν) ≥ 0

where K =×Ki with proper cones Ki ⊂ Rki and function g :×Rki × Rp → R
defined by

g(λ, ν) = inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
note this theorem subsumes Theorem 13 and Theorem 14
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Strong alternatives for SDP

• for F1, . . . , Fn, G ∈ Sk, x ∈ Rn, and Z ∈ Sk

– below systems are strong alternatives

x1F1 + · · · + xnFn + G ≺ 0

and

Z ⪰ 0 Z ̸= 0 G • Z ≥ 0 Fi • Z = 0 i = 1, . . . , n

– if
∑

viFi ⪰ 0 ⇒
∑

viFi = 0, below systems are strong alternatives

x1F1 + · · · + xnFn + G ⪯ 0

and

Z ⪰ 0 G • Z > 0 Fi • Z = 0 i = 1, . . . , n

Searching for Universal Truths - Convex Optimization - Convex Optimization with Generalized Inequalities 169



Unconstrained Minimization



Sunghee Yun July 14, 2025

Unconstrained minimization

• consider unconstrained convex optimization problem, i.e., m = p = 0 in Definition 42

minimize f(x)

where domain of optimization problem is D = F ⊂ Rn

• assume

– f is twice-differentiable (hence by definition F is open)

– optimal solution x∗ exists, i.e., p∗ = infx∈D f(x) = f(x∗)

• Theorem 4 implies x∗ is optimal solution if and only if

∇f(x
∗
) = 0

• can solve above equation directly for few cases, but usually depend on iterative method,

i.e., find sequence of points x(0), x(1), . . . ∈ F such that limk→∞ f(x(k)) = p∗
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Requirements for iterative methods

• requirements for iterative methods

– initial point x(0) should be in domain of optimization problem, i.e.

x
(0) ∈ F

– sublevel set of f(x(0))

S =
{
x ∈ F

∣∣∣f(x) ≤ f(x
(0)

)
}

should be closed

• e.g.

– sublevel set of f(x(0)) is closed for all x(0) ∈ F if f is closed, i.e., all its sublevel

sets are closed

– f is closed if F = Rn and f is continuous

– f is closed if f is continuous, F is open, and f(x) → ∞ as x → bdF
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Unconstrained minimization examples

• convex quadratic problem

minimize f(x) = (1/2)xTPx + qTx

where P ∈ Sn
+ and q ∈ Rn

– solution obtained by solving

∇f(x
∗
) = Px

∗
+ q = 0

- if solution exists, x∗ = −P †q (thus p∗ > −∞)

- otherwise, problem is unbounded below, i.e., p∗ = −∞

– ability to analytically solve quadratic minimization problem is basis for Newton’s

method, power method for unconstrained minimization
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– least-squares (LS) is special case of convex quadratic problem

minimize (1/2)∥Ax − b∥2
2 = (1/2)xT (ATA)x − bTAx + (1/2)∥b∥2

2

- optimal always exists, can be obtained via normal equations

A
T
Ax

∗
= b

• unconstrained GP

minimize f(x) = log (
∑

exp(Ax + b))

for A ∈ Rm×n and b ∈ Rm

– solution obtained by solving

∇f(x
∗
) =

∑
AT exp(Ax∗ + b)∑
exp(Ax∗ + b)

= 0
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– need to resort to iterative method - since F = Rn and f is continuous, f is closed,

hence every point in Rn can be initial point

• analytic center of linear inequalities

minimize f(x) = −
∑

log(b − Ax)

where F = {x ∈ Rn|b − Ax ≻ 0}

– need to resort to iterative method - since F is open, f is continuous, and f(x) → ∞
as x → bdF , f is closed, hence every point in F can be initial point

– f , called logarithmic barrier for inequalities Ax ⪯ b
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• analytic center of LMI

minimize f(x) = − log detF (x) = log detF (x)−1

where F : Rn → Sk is defined by

F (x) = x1F1 + · · · + xnFn

where Fi ∈ Sk and F = {x ∈ Rn|F (x) ≻ 0}

– need to resort to iterative method - since F is open, f is continuous, and f(x) → ∞
as x → bdF , f is closed, hence every point in F can be initial point

– f , called logarithmic barrier for LMI
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Strong convexity and implications

• function f is strongly convex on S

(∃m > 0) (∀x ∈ S)
(
∇2

f(x) ⪰ mI
)

• strong convexity implies for every x, y ∈ S

f(y) ≥ f(x) + ∇f(x)
T
(y − x) + (m/2)∥y − x∥2

2

– which implies gradient provides optimality certificate and tells us how far current

point is from optimum, i.e.

f(x) − p
∗ ≤ (1/2m)∥∇f(x)∥2

2 ∥x − x
∗∥2 ≤ (2/m)∥∇f(x)∥2

• first equation implies sublevel sets contained in S is bounded, hence continuous function

∇2f(x) is also bounded, i.e., (∃M > 0)
(
∇2f(x) ⪯ MI

)
, then

f(x) − p
∗ ≥

1

2M
∥∇f(x)∥2

2
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Iterative methods

Definition 68. [iterative meethods] numerical method generating sequence of points

x(0), x(1), . . . ∈ S ⊂ Rn to make f(x(k)) approaches to some desired value from some

f : S → R, called iterative method

Definition 69. [iterative meethods with search directions] iterative method generating

search direction ∆x(k) ∈ Rn and step length t(k) > 0 at each step k such that

x
(k+1)

= x
(k)

+ t
(k)

∆x
(k)

called iterative method with search direction where ∆x(k), called search direction, t(k),

called step length (which actually is not length)

Definition 70. [descent methods] for function f : S → R, iterative method reducing

function value, i.e.

f(x
(k+1)

) ≤ f(x
(k)

)

for k = 0, 1, . . ., called descent method
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Line search methods

Definition 71. [line search method] for iterating method with search directions,

determining search direction ∆x(k) and step length t(k) for each step, called line search

method

Algorithm 1. [exact line search] for descent iterating method with search directions,

determine t by

t = argmin
s>0

f(x + s∆x)

Algorithm 2. [backtracking line search] for descent iterating method with search

directions, determine t by

Require: f , ∆x(k), α ∈ (0, 0.5), β ∈ (0, 1)

t := 1

while f(x(k) + t∆x(k)) > f(x(k)) + αt∇f(x(k))T∆x(k) do

t := βt

end while
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Gradient descent method

Algorithm 3. [gradient descent method]

Require: f , initial point x ∈ dom f

repeat

search direction - ∆x := −∇f(x)

do line search to choose t > 0

update - x := x + t∆x

until stopping criterion satisfied
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Summary of gradient descent method

• gradient method often exhibits approximately linear convergence, i.e., error f(x(k))−p∗

converges to zero approximately as geometric series

• choice of backtracking parameters α and β has noticeable but not dramatic effect on

convergence

• exact line search sometimes improves convergence of gradient method, but not by large,

hence mostly not worth implementation

• converge rate depends greatly on condition number of Hessian or sublevel sets - when

condition number if large, gradient method can be useless
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Newton’s method - motivation

• second-order Taylor expansion of f - f̂(∆x) = f(x+∆x) = f(x)+∇f(x)T∆x+
1
2∆xT∇2f(x)∆x

• minimum of Taylor expansion achieved when ∇f̂(∆x) = ∇f(x) + ∇2f(x)v = 0

• solution called Newton step

∆xnt(x) = −∇2
f(x)

−1∇f(x)

assuming ∇2f(x) ≻ 0

• thus Newton step minimizes local quadratic approximation of function

• difference of current and quadratic approximation minimum

f(x) − f̂(∆xtn(x)) =
1

2
∆x

T
nt∇

2
f(x)∆xnt =

1

2
λ(x)

2

• Newton decrement

λ(x) =
√

∆xnt(x)T∇2f(x)∆xnt(x) =
√

∇f(x)T∇2f(x)−1∇f(x)
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Newton’s method

Algorithm 4. [Newton’s method] damped descent method using Newton step

Require: f , initial point x ∈ dom f , tolerance ϵ > 0

loop

computer Newton step and descrement

∆xnt(x) := −∇2
f(x)

−1∇f(x) λ(x)
2
:= ∇f(x)

T∇2
f(x)

−1∇f(x)

stopping criterion - quit if λ(x)2/2 < ϵ

do line search to choose t > 0

update - x := x + t∆xnt

end loop

• Newton step is descent direction since(
d

dx
f(x + t∆xnt)

)∣∣∣∣
t=0

= ∇f(x)
T
∆xnt = −λ(x)

2
< 0
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Assumptions for convergence analysis of Newton’s method

• assumptions

– strong convexity and boundedness of Hessian on sublevel set

(∃ m,M > 0) (∀x ∈ S)
(
mI ⪯ ∇2

f(x) ⪯ MI
)

– Lipschitz continuity of Hessian on sublevel set

(∃L > 0) (∀x, y ∈ S)
(
∥∇2

f(x) − ∇2
f(y)∥2 ≤ L∥x − y∥2

)

• Lipschitz continuity constant L plays critical role in performance of Newton’s method

– intuition says Newton’s method works well for functions whose quadratic

approximations do not change fast, i.e., when L is small
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Convergence analysis of Newton’s method

Theorem 19. [convergence analysis of Newton’s method] for function f satisfying

strong convexity, Hessian continuity & Lipschitz continuity with m,M,L > 0, exist

0 < η < m2/L and γ > 0 such that for each step k

- damped Newton phase - if ∥∇f(x(k))∥2 ≥ η,

f(x
(k+1)

) − f(x
(k)

) ≤ −γ

- quadratic convergence phase - if ∥∇f(x(k))∥2 < η, backtracking line search selects

step length t(k) = 1

L

2m2
∥∇f(x

(k+1)
)∥2 ≤

(
L

2m2
∥∇f(x

(k)
)∥2

)2

# iterations of Newton’s method required to satisfy stopping criterion f(x(k)) − p∗ ≤ ϵ

is
f(x(0)) − p∗

γ
+ log2 log2(ϵ0/ϵ) where ϵ0 = 2m

3
/L

2
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Summary of Newton’s method

• Newton’s method is affine invariant, hence performance is independent of condition

number unlike gradient method

• once entering quadratic convergence phase, Newton’s method converges extremely fast

• performance not much dependent on choice of algorithm parameters

• big disadvantage is computational cost for evaluating search direction, i.e., solving linear

system
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Self-concordance

Definition 72. [self-concordance] convex function f : X → R with X ⊂ Rn such

that for all x ∈ X, v ∈ Rn, g(t) = f(x + tv) with dom g = {t ∈ R|x + tv ∈ X}
satisfies

(∀t ∈ dom g)
(
|g′′′

(t)| ≤ 2g
′′
(t)

3/2
)

Proposition 11. [self-concordance for logarithms] if convex function g : X → R
with X ⊂ R++ satisfies

|g′′′
(x)| ≤ 3g

′′
(x)/x

function f with dom f = {x ∈ R++|g(x) < 0} defined by

f(x) = − log(−g(x)) − log x

and function h with domh = {x ∈ R++|g(x) + ax2 + bx + c < 0} with a ≥ 0

defined by

h(x) = − log(−g(x) − ax
2 − bx − c) − log x

are self-concordant
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Why self-concordance?

• convergence analysis of Newton’s method depends on assumptions about function

characteristics, e.g., m,M,L > 0 for strong convexity, continuity of Hessian, i.e.

mI ⪯ ∇2
f(x) ⪯ MI ∥∇2

f(x) − ∇2
f(y)∥ ≤ L∥x − y∥

• self-concordance discovered by Nesterov and Nemirovski (who gave name self-

concordance) plays important role for reasons such as

– convergence analysis does not depend any function characterizing paramters

– many barrier functions which are used for interior-point methods, which are important

class of optimization algorithms are self-concordance

– property of self-concordance is affine invariant
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Self-concordance preserving operations

Proposition 12. [self-concordance preserving operations] self-concordance is preserved

by positive scaling, addition, and affine transformation, i.e., if f, g : X → R are self-

concordant functions with X ⊂ Rn, h : H → Rn with H ⊂ Rm are affine functions,

and a > 0

af, f + g, f ◦ h

are self-concordant where dom f ◦ h = {x ∈ H|h(x) ∈ X}
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Self-concordant function examples

• negative logarithm - f : R++ → R with

f(x) = − log x

is self-concordant since

|f ′′′
(x)|/f ′′

(x)
3/2

=
(
2/x

3
)
/
(
(1/x

2
)
3/2
)

= 2

• negative entropy plus negative logarithm - f : R++ → R with

f(x) = x log x − log x

is self-concordant since

|f ′′′
(x)|/f ′′

(x)
3/2

= (x + 2)/(x + 1)
3/2 ≤ 2
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• log barrier for linear inequalities - for A ∈ Rm×n and b ∈ Rm

f(x) = −
∑

log(b − Ax)

with dom f = {x ∈ Rn|b−Ax ≻ 0} is self-concordant by Proposition 12, i.e., f is

affine transformation of sum of self-concordant functions

Searching for Universal Truths - Convex Optimization - Unconstrained Minimization 191



Sunghee Yun July 14, 2025

• log-determinant - f : Sn
++ → R with

f(X) = log detX
−1

= − log detX

is self-concordant since for every X ∈ Sn
++ and V ∈ Sn function g : R → R

defined by g(t) = − log det(X + tV ) where dom f = {t ∈ R|X + tV ⪰ 0} is

self-concordant since

g(t) = − log det(X
1/2

(I + tX
−1/2

V X
−1/2

)X
1/2

)

= − log detX − log det(I + tX
−1/2

V X
−1/2

)

= − log detX −
∑

log(1 + tλi(X,V ))

where λi(X,V ) is i-th eigenvalue ofX−1/2V X1/2 is self-concordant by Proposition 12,

i.e., g is affine transformation of sum of self-concordant functions
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• log of concave quadratic - f : X → R with

f(x) = − log(−x
T
Px − q

T
x − r)

where P ∈ Sn
+ and X = {x ∈ Rn|xTPx + qTx + r < 0}

• function f : X → R with

f(x) = − log(−g(x)) − log x

where dom f = {x ∈ dom g ∩ R++|g(x) < 0} and function h : H → R

h(x) = − log(−g(x) − ax
2 − bx − c) − log x

where a ≥ 0 and domh = {x ∈ dom g ∩ R++|g(x) + ax2 + bx + c < 0} are

self-concordant if g is one of below

– g(x) = −xp for 0 < p ≤ 1

– g(x) = − log x

– g(x) = x log x
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– g(x) = xp for −1 ≤ p ≤ 0

– g(x) = (ax + b)2/x for a, b ∈ R

since above g satisfy |g′′′(x)| ≤ 3g′′(x)/x for every x ∈ dom g (Proposition 11)

• function f : X → R with X = {(x, y)|∥x∥2 < y} ⊂ Rn × R++ defined by

f(x, y) = − log(y
2 − x

T
x)

is self-concordant - can be proved using Proposition 11

• function f : X → R with X = {(x, y)||x|p < y} ⊂ R × R++ defined by

f(x, y) = −2 log y − log(y
2/p − x

2
)

where p ≥ 1 is self-concordant - can be proved using Proposition 11

• function f : X → R with X = {(x, y)| exp(x) < y} ⊂ R × R++ defined by

f(x, y) = − log y − log(log y − x)

is self-concordant - can be proved using Proposition 11
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Properties of self-concordant functions

Definition 73. [Newton decrement] for convex function f : X → R with X ⊂ Rn,

function λ : X̃ → R+ with X̃ = {x ∈ X|∇2f(x) ≻ 0} defined by

λ(x) = (∇f(x)
T∇2

f(x)
−1∇f(x))

1/2

called Newton decrement

- note

λ(x) = sup
v ̸=0

(
v
T∇f(x)/

(
v
T∇2

f(x)v
)1/2

)
Theorem 20. [optimality certificate for self-concordant functions] for strictly convex

self-concordant function f : X → Rn with X ⊂ Rn, Hessian is positive definition

everywhere (hence Newton decrement is defined everywhere) and for every x ∈ X

p
∗ ≥ f(x) − λ(x)

2 ⇔ f(x) − p
∗ ≤ λ(x)

2

if λ(x) ≤ 0.68
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Stopping criteria for self-concordant objective functions

• recall λ(x)2 provides approximate optimality certificate, (page 182) i.e., assuming f is

well approximated by quadratic function around x

f(x) − p
∗ ⪅ λ(x)

2
/2

• however, strict convexity together with self-concordance provides proven bound (by

Theorem 20)

f(x) − p
∗ ≤ λ(x)

2

for λ(x) ≤ 0.68

• hence can use following stopping criterion for guaranteed bound

λ(x)
2 ≤ ϵ ⇒ f(x) − p

∗ ≤ ϵ

for ϵ ≤ 0.682
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Convergence analysis of Newton’s method for self-concordant
functions

Theorem 21. [convergence analysis of Newton’s method for self-concordant functions]
for strictly convex self-concordant function f , exist 0 < η ≤ 1/4 and γ > 0 (which

depend only on line search parameters) such that

- damped Newton phase - if λ(x(k)) > η

f(x
(k+1)

) − f(x
(k)

) ≤ −γ

- quadratic convergence phase - if λ(x(k)) ≤ η backtracking line search selects step

length t(k) = 1

2λ(x
(k+1)

) ≤
(
2λ(x

(k)
)
)2

# iterations required to satisfy stopping criterion f(x(k)) − p∗ ≤ ϵ is(
f(x

(0)
) − p

∗
)
/γ + log2 log2(1/ϵ)

where γ = αβ(1 − 2α)2/(20 − 8α)
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Equality constrained minimization

• consider equality constrained convex optimization problem, i.e., m = 0 in Definition 42

minimize f(x)

subject to Ax = b

where A ∈ Rp×n and domain of optimization problem is D = F ⊂ Rn

• assume

– rankA = p < n, i.e., rows of A are linearly independent

– f is twice-differentiable (hence by definition F is open)

– optimal solution x∗ exists, i.e., p∗ = infx∈F f(x) = f(x∗) and Ax∗ = b
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Solving KKT for equality constrained minimization

• Theorem 10 implies x∗ ∈ F is optimal solution if and only if exists ν∗ ∈ Rp satisfy

KKT optimality conditions, i.e.,

Ax
∗
= b primal feasibility equations

∇f(x
∗
) + A

T
ν
∗
= 0 dual feasibility equations

• solving equality constrained problem is equivalent to solving KKT equations

– handful types of problems can be solved analytically

• using unconstrained minimization methods

– can eliminate equality constraints and apply unconstrained minimization methods

– solving dual problem using unconstrained minimization methods and retrieve primal

solution (refer to page 133)

• will discuss Newton’s method directly handling equality constraints

– preserving problem structure such as sparsity
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Equality constrained convex quadratic minimization

• equality constrained convex quadratic minimization problem

minimize f(x) = (1/2)xTPx + qTx

subject to Ax = b

where P ∈ Sn
+ and A ∈ Rp×n

• important since basis for extension of Newton’s method to equality constrained problems

• KKT system

Ax
∗
= b & Px

∗
+ q + A

T
ν
∗
= 0 ⇔

[
P AT

A 0

]
︸ ︷︷ ︸
KKT matrix

[
x∗

ν∗

]
=

[
−q

b

]

• exist primal and dual optimum (x∗, ν∗) if and only if KKT system has solution;

otherwise, problem is unbounded below
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Eliminating equality constraints

• can solve equality constrained convex optimization by

– eliminating equality constraints and

– using optimization method for solving unconstrained optimization

• note

F = {x|Ax = b} = {Fz + x0|z ∈ Rn−p}
for some F ∈ Rn×(n−p) where R(F ) = N (A)

• thus original problem equivalent to

minimize f(Fz + x0)

• if z∗ is optimal solution, x∗ = Fz∗ + x0

• optimal dual can be retrieved by

ν
∗
= −(AA

T
)
−1

A∇f(x
∗
)
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Solving dual problems

• Lagrange dual function of equality constrained problem

g(ν) = inf
x∈D

(
f(x) + ν

T
(Ax − b)

)
= −b

T
ν − sup

x∈D

(
(−A

T
ν)

T
x − f(x)

)
= −b

T
ν − f

∗
(−A

T
ν)

• dual problem

maximize −bTν − f∗(−ATν)

• by assumption, strong duality holds, hence if ν∗ is dual optimum

g(ν
∗
) = p

∗

• if dual objective is twice-differentiable, can solve dual problem using unconstrained

minimization methods

• primal optimum can be retrieved using method on page 133)
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Newton’s method with equality constraints

• finally discuss Newton’s method which directly handles equality constraints

– similar to Newton’s method for unconstrained minimization

– initial point, however, should be feasible, i.e., x(0) ∈ F and Ax(0) = b

– Newton step tailored for equality constrained problem
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Newton step via second-order approximation

• solve original problem approximately by solving

minimize f̂(x + ∆x) = f(x) + ∇f(x)T∆x + (1/2)∆xT∇2f(x)∆x

subject to A(x + ∆x) = b

where x ∈ F

• Newton step for equality constrained minimization problem, defined by solution of KKT

system for above convex quadratic minimization problem[
∇2f(x) AT

A 0

] [
∆xnt

w

]
=

[
−∇f(x)

0

]
only when KKT system is nonsingular
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Newton step via solving linearized KKT optimality conditions

• recall KKT optimality conditions for equality constrained convex optimization problem

Ax
∗
= b & ∇f(x

∗
) + A

T
ν
∗
= 0

• linearize KKT conditions

A(x + ∆x) = b & ∇f(x) + ∇2
f(x)∆x + A

T
w = 0

⇔ A∆x = 0 & ∇2
f(x)∆x + A

T
w = −∇f(x)

where x ∈ F

• Newton step defined by above equations is equivalent to that obtained by second-order

approximation
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Newton decrement for equality constrained minimization

• Newton descrement for equality constrained problem is defined by

λ(x) =
(
∆xnt∇2

f(x)∆xnt

)1/2

• same expression as that for unconstrained minimization, but is different since

Newton step ∆xnt is different from that for unconstrained minimization, i.e.,

∆xnt ̸= −∇2f(x)−1∇f(x) (refer to Definition 73)

• however, as before,

f(x) − inf
∆x∈Rn

{f̂(x + ∆x)|A(x + ∆x) = b} = λ(x)
2
/2

and (
d

dt
f(x + t∆xnt)

)∣∣∣∣
t=0

= ∇f(x)
T
∆xnt = −λ(x)

2
< 0
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Feasible Newton’s method for equality constrained minimization

Algorithm 5. [feasible Newton’s method for equality constrained minimization]

Require: f , initial point x ∈ dom f with Ax = b, tolerance ϵ > 0

loop

computer Newton step and descrement ∆xnt(x) & λ(x)

stopping criterion - quit if λ(x)2/2 < ϵ

do line search on f to choose t > 0

update - x := x + t∆xnt

end loop

• Algorithm 5

– assumes KKT matrix is nonsingular for every step

– is feasible descent method since all iterates are feasible with f(x(k+1)) < f(x(k))
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Assumptions for convergence analysis of feasible Newton’s method
for equality constrained minimization

• feasibility of initial point - x(0) ∈ dom f & Ax(0) = b

• sublevel set S = {x ∈ dom f |f(x) ≤ f(x(0)), Ax = b} is closed

• boundedness of Hessian on S

(∃M > 0) (∀x ∈ S)
(
∇2

f(x) ⪯ MI
)

• boundedness of KKT matrix on S - corresponds to strong convexity assumption in

unconstrained minimization

(∃K > 0) (∀x ∈ S)

(∥∥∥∥∥
[

∇2f(x) AT

A 0

]−1
∥∥∥∥∥
2

≤ K

)

• Lipschitz continuity of Hessian on S

(∃L > 0) (∀x, y ∈ S)
(∥∥∥∇2

f(x) − ∇2
f(y)

∥∥∥
2
≤ L∥x − y∥2

)
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Convergence analysis of feasible Newton’s method for equality
constrained minimization

• convergence analysis of Newton’s method for equality constrained minimization can be

done by analyzing unconstrained minimization after eliminating equality constraints

• thus, yield exactly same results as for unconstrained minimization (Theorem 19) (with

different parameter values), i.e.,

– consists of damped Newton phase and quadratic convergence phase

– # iterations required to achieve f(x(k)) − p∗ ≤ ϵ is(
f(x

(0)
) − p

∗
)
/γ + log2 log2(ϵ0/ϵ)

• for # iterations required to achieve f(x(k)) − p∗ ≤ ϵ for self-concordant functions is

also same as for unconstrained minimization (Theorem 21)(
f(x

(0)
) − p

∗
)
/γ + log2 log2(1/ϵ)

where γ = αβ(1 − 2α)2/(20 − 8α)

Searching for Universal Truths - Convex Optimization - Equality Constrained Minimization 210



Sunghee Yun July 14, 2025

Newton step at infeasible points

• only assume that x ∈ dom f (hence, can be infeasible)

• (as before) linearize KKT conditions

A(x + ∆xnt) = b & ∇f(x) + ∇2
f(x)∆xnt + A

T
w = 0

⇔ A∆xnt = b − Ax & ∇2
f(x)∆xnt + A

T
w = −∇f(x)

⇔
[

∇2f(x) AT

A 0

] [
∆xnt

w

]
= −

[
∇f(x)

Ax − b

]

• same as feasible Newton step except second component on RHS of KKT system
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Interpretation as primal-dual Newton step

• update both primal and dual variables x and ν

• define r : Rn → Rp → Rn × Rp by

r(x, ν) = (rdual(x, ν), rpri(x, ν))

where

dual residual − rdual(x, ν) = ∇f(x) + A
T
ν

primal residual − rpri(x, ν) = Ax − b
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Equivalence of infeasible Newton step to primal-dual Newton step

• linearize r to obtain primal-dual Newton step, i.e.

r(x, ν) + Dx,νr(x, ν)

[
∆xpd

∆νpd

]
= 0

⇔
[

∇2f(x) AT

A 0

] [
∆xpd

∆νpd

]
= −

[
∇f(x) + ATν

Ax − b

]

• letting ν+ = ν + ∆νpd gives[
∇2f(x) AT

A 0

] [
∆xpd

ν+

]
= −

[
∇f(x)

Ax − b

]

– equivalent to infeasible Newton step

– reveals that current value of dual variable not needed
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Residual norm reduction property

• infeasible Newton step is not descent direction (unlike feasible Newton step) since(
d

dt
f(x + t∆xpd)

)∣∣∣∣
t=0

= ∇f(x)
T
∆xpd

= −∆x
T
pd

(
∇2

f(x)∆xpd + A
T
w
)

= −∆x
T
pd∇

2
f(x)∆xpd + (Ax − b)

T
w

which is not necessarily negative

• however, norm of residual decreases in infeasible Newton direction(
d

dx
∥r(y + t∆ypd)∥2

2

)∣∣∣∣
t=0

= −2r(y)
T
r(y) = −2∥r(y)∥2

2

⇔
(

d

dx
∥r(y + t∆ypd)∥2

)∣∣∣∣
t=0

=
−2∥r(y)∥2

2

2∥r(y)∥2

= −∥r(y)∥2

where y = (x, ν) and ∆ypd = (∆xpd,∆νpd)

• can use r(x(k), ν(k)) to measure optimization progress for infeasible Newton’s method
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Full and damped step feasibility property

• assume step length is t at some iteration, then

rpri(x
+
, ν

+
) = Ax

+ − b = A(x + t∆xpd) − b = (1 − t)rpri(x, ν)

• hence l > k

r
(l)

=

(
l−1∏
i=k

(1 − t
(i)
)

)
r
(k)

– primal residual reduced by 1 − t(k) at step k

– Newton step becomes feasible step once full step length (t = 1) taken
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Infeasible Newton’s method for equality constrained minimization

Algorithm 6. [infeasible Newton’s method for equality constrained minimization]

Require: f , initial point x ∈ dom f & ν, tolerance ϵpri > 0 & ϵdual > 0

repeat

computer Newton step and descrement ∆xpd(x) & ∆νpd(x),

do line search on r(x, ν) to choose t > 0

update - x := x + t∆xpd & ν := ν + t∆νpd

until ∥rdual(x, ν)∥ ≤ ϵdual & ∥Ax − b∥ ≤ ϵpri

• note similarity and difference of Algorithm 6 & Algorithm 5

– line search done not on f , but on primal-dual residuals r(x, ν)

– stopping criteria depends on r(x, ν), not on Newton decrementa λ(x)2

– primal and dual feasibility checked separately - here norm in ∥Ax − b∥ can be any

norm, e.g., ∥ · ∥0, ∥ · ∥1, ∥ · ∥2, ∥ · ∥∞, depending on specific application
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Line search methods for infeasible Newton’s method

• line search methods for infeasible Newton’s method, i.e., Algorithm 1 & Algorithm 2

same with f replaced by ∥r(x, ν)∥2,

• but they have special forms (of course) - refer to below special case descriptions

Algorithm 7. [exact line search for infeasible Newton’s method]

t = argmin
s>0

∥r(x + s∆xpd, ν + s∆νpd)∥2

Algorithm 8. [backtracking line search for infeasible Newton’s method]

Require: ∆x, ∆ν, α ∈ (0, 0.5), β ∈ (0, 1)

t := 1

while ∥r(x + t∆xpd, ν + t∆νpd)∥2 > (1 − αt)∥r(x, ν)∥2 do

t := βt

end while
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Pros and cons of infeasible Newton’s method

• pros

– do not need to find feasible point separately, e.g.

- “minimize − log(Ax) + bTx”

can be solved by converting to

- “minimize − log(y) + bTx s.t. y = Ax”

and solved by infeasible Newton’s method

– if step length is one at any iteration, following steps coincides with feasible Newton’s

method - could switch to feasible Newton’s method

• cons

– exists no clear way to detect feasibility - primal residual decreases slowly (phase I

method in interior point method resolves this problem)

– convergence of infeasible Newton’s method can be very slow (until feasibility is

achieved0
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Assumptions for convergence analysis of infeasible Newton’s method
for equality constrained minimization

• sublevel set S =
{
(x, ν) ∈ dom f × Rm

∣∣∣∥r(x, ν)∥2 ≤ ∥r(x(0), ν(0))∥2

}
is

closed, which always holds because ∥r∥2 is closed

• boundedness of KKT matrix on S

(∃K > 0) (∀x ∈ S)

(∥∥∥Dr(x, ν)
−1
∥∥∥
2
=

∥∥∥∥∥
[

∇2f(x) AT

A 0

]−1
∥∥∥∥∥
2

≤ K

)

• Lipschitz continuity of Hessian on S

(∃L > 0) (∀(x, ν), (y, µ) ∈ S) (∥Dr(x, ν) − Dr(y, µ)∥2 ≤ L∥(x, ν) − (y, µ)∥2)

• above assumptions imply {x ∈ dom f |Ax = b} ̸= ∅ and exist optimal point (x∗, ν∗)
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Convergence analysis of infeasible Newton’s method for equality
constrained minimization

• very simliar to that for Newton’s method for unconstrained minimization

• consist of two phases - like unconstrained minimization or infeasible Newton’s method

(refer to Theorem 19 or page 210)

– damped Newton phase - if ∥r(x(k), ν(k))∥2 > 1/(K2L)

∥r(x(k+1)
, ν

(k+1)
)∥2 ≤ ∥r(x(k)

, ν
(k)

)∥2 − αβ/K
2
L

– quadratic convergence damped Newton phase - if ∥r(x(k), ν(k))∥2 ≤ 1/(K2L)(
K

2
L∥r(x(k)

, ν
(k)

)∥2/2
)

≤
(
K

2
L∥r(x(k−1)

, ν
(k−1)

)∥2/2
)2

≤ · · · ≤ (1/2)
2k

• # iterations of infeasible Newton’s method required to satisfy ∥r(x(k), ν(k))∥2 ≤ ϵ

∥r(x(0)
, ν

(0)
)∥/(αβ/K2

L) + log2 log2(ϵ0/ϵ) where ϵ0 = 2/(K
2
L)

• (x(k), ν(k)) converges to (x∗, ν∗)
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Interior-point methods

• want to solve inequality constrained minimization problem

• interior-point methods solve convex optimization problem (Definition 42) or KKT

optimality conditions (Definition 62) by

– applying Newton’s method to sequence of

- equality constrained problems or

- modified versions of KKT optimality conditions

• discuss interior-point barrier method & interior-point primal-dual method

• hierarchy of convex optimization algorithms

– simplest - linear equality constrained quadratic program - can solve analytically

– Newton’s method - solve linear equality constrained convex optimization problem by

solving sequence of linear equality constrained quadratic programs

– interior-point methods - solve linear equality & convex inequality constrained problem

by solving sequence of lienar equality constrained convex optimization problem
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Indicator function barriers

• approxmiate general convex inequality constrained problem as linear equality constrained

problem

• make inequality constraints implicit in objective function

minimize f(x) +
∑

I−(q(x))

subject to Ax = b

where I− : R → R is indicator function for nonpositive real numbers, i.e.

I−(u) =

{
0 u ≤ 0

∞ u > 0
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Logarithmic barriers

• approximate indicator function by logarithmic function

Î− = −(1/t) log(−u) dom Î− = −R++

for t > 0 to obtain

minimize f(x) +
∑

−(1/t) log(−q(x))

subject to Ax = b

• objective function is convex due to composition rule for convexity preservation (page 41),

and differentiable

• hence, can use Newton’s method to solve it

• function ϕ defined by

ϕ(x) = −
∑

log(−q(x))

with domϕ{x ∈ X|q(x) ≺ 0} called logarithmic barrier or log barrier

• solve sequence of log barrier problems as we increase t
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Central path

• optimization problem

minimize tf(x) + ϕ(x)

subject to Ax = b

with t > 0 where

ϕ(x) = −
∑

log(−q(x))

• solution of above problem, called central point, denoted by x∗(t), set of central points,

called central path

• intuition says x∗(t) will converge to x∗ as t → ∞
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• KKT conditions imply

Ax
∗
(t) = b q(x

∗
(t)) ≺ 0

and exists ν∗(t) such that

0 = t∇f(x
∗
(t)) + ∇ϕ(x

∗
(t)) + tA

T
ν
∗
(t)

= t∇f(x
∗
(t)) −

∑ 1

qi(x∗(t))
∇qi(x

∗
(t)) + tA

T
ν
∗
(t)

• thus if we let λ∗(t) = −1/tqi(x
∗(t)), x∗(t) minimizes

L(x, λ
∗
(t), ν

∗
(t)) = f(x) + λ

∗
(t)

T
q(x) + ν

∗
(t)

T
(Ax − b)

where L is Lagrangian of original problem in Definition 42
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• hence, dual function g(λ∗(t), ν∗(t)) is finite and

g(λ
∗
(t), ν

∗
(t)) = inf

x∈X
L(x, λ

∗
(t), ν

∗
(t)) = L(x

∗
(t), λ

∗
(t), ν

∗
(t))

= f(x
∗
(t)) + λ

∗
(t)

T
q(x

∗
(t)) + ν

∗
(t)

T
(Ax

∗
(t) − b) = f(x

∗
(t)) − m/t

and

f(x
∗
(t)) − p

∗ ≤ f(x
∗
(t)) − g(λ

∗
(t), ν

∗
(t)) = m/t

that is,

x∗(t) is no more than m/t-suboptimal

which confirms out intuition that x∗(t) → x∗ as t → ∞
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Central path interpretation via KKT conditions

• previous arguments imply that x is central point, i.e., x = x∗(t) for some t > 0 if

and only if exist λ and ν such that

Ax = b q(x) ⪯ 0 - primal feasibility

λ ⪰ 0 - dual feasibility

−λi
T
qi(x) = 1/t - complementary 1/t-slackness

∇xL(x, λ, ν) = 0 - vanishing gradient of Lagrangian

called centrality conditions

• only difference between centrality conditions and KKT conditions in Definition 62 is

complementary 1/t-slackness

– note that I’ve just made up term “complementary 1/t-slackness” - you won’t be able

to find terminology in any literature

• for large t, λ∗(t) & ν∗(t) very closely satisfy (true) complementary slackness
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Central path interpretation via force field

• assume exist no equality constraints

• interpret ϕ as potential energy by some force field, e.g., electrical field and tf as

potential energy by some other force field, e.g., gravity

• then

– force by first force field (in n-dimensional space), which we call barrier force, is

−∇ϕ(x) =
∑ 1

qi(x)
∇qi(x)

– force by second force field, which we call objective force, is

−∇(tf(x)) = −t∇f(x)

• x∗(t) is point where two forces exactly balance each other

– as x approach boundary, barrier force pushes x harder from barriers,

– as t increases, objective force pushes x harder to point where objective potential

energy is minimized
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Equality constrained problem using log barrier

• central point x∗(t) is m/t-suboptimal point guaranteed by optimality certificate

g(λ∗(t), ν∗(t))

• hence solving below problem provides solution with ϵ-suboptimality

minimize (m/ϵ)f(x) + ϕ(x)

subject to Ax = b

• but works only for small problems since for large m/ϵ, objective function ill behaves
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Barrier methods

Algorithm 9. [barrier method]

Require: strictly feasible x, t > 0, µ > 1, tolerance ϵ > 0

repeat

centering step - find x∗(t) by minimizing tf + ϕ subject to Ax = b starting at x

(optionally) compute λ∗(t) & ν∗(t)

stopping criterion - quit if m/t < ϵ

increase t - t := µt

update x - x := x∗(t)

until

• barrier method, also called path-following method, solves sequence of equality

constrained optimization problem with log barrier

– when first proposed by Fiacco and McCormick in 1960s, it was called sequential

unconstrained minimization technique (SUMT)

• centering step also called outer iteration

• each iteration of algorithm used for equality constrained problem, called inner iteration
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Accuracy in centering in barrier method

• accuracy of centering

– only goal of centering is getting close to x∗, hence exact calculation of x∗(t) not

critical as long as approximates of x∗(t) go to x∗

– while cannot calculate g(λ, ν) for this case, below provides dual feasible point when

Newton step ∆xnt for optimization problem on page 225 is small, i.e., for nearly

centered

λ̃i = −
1

tqi(x)

(
1 −

∇qi(x)
T∆xnt

qi(x)

)
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Choices of parameters of barrier method

• choice of µ

– µ determines aggressiveness of t-update

- larger µ, less outer iterations, but more inner iterations

- smaller µ, less outer iterations, but more inner iterations

– values from 10 to 20 for µ seem to work well

• candidates for choice of initial t - choose t(0) such that

m/t
(0) ≈ f(x

(0)
) − p

∗

or make central path condition on page 225 maximally satisfied

t
(0)

= arginf
t

inf
ν̃

∥∥∥t∇f(x
(0)

) + ∇ϕ(x
(0)

) + A
T
ν̃
∥∥∥
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Convergence analysis of barrier method

• assuming tf + ϕ can be minimized by Newton’s method for t(0), µt(0), µ2t(0), . . .

• at k’th step, duality gap achieved is m/µkt(0)

• # centering steps required to achieve accuracy of ϵ is
log
(
m/ϵt(0)

)
log µ


plus one (initial centering step)

• for convergence of centering

– for feasible centering problem, tf + ϕ should satisfy conditions on page 209, i.e.,

initial sublevel set is closed, associated inverse KKT matrix is bounded & Hessian

satisfies Lipschitz condition

– for infeasible centering problem, tf + ϕ should satisfy conditions on page 219
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Primal-dual & barrier interior-point methods

• in primal-dual interior-point methods

– both primal and dual variables are updated at each iteration

– search directions are obtained from Newton’s method, applied to modified KKT

equations, i.e., optimality conditions for logarithmic barrier centering problem

– primal-dual search directions are similar to, but not quite the same as, search directions

arising in barrier methods

– primal and dual iterates are not necessarily feasible

• primal-dual interior-point methods

– often more efficient than barrier methods especially when high accuracy is required -

can exhibit better than linear convergence

– (customized versions) outperform barrier method for several basic problems, such as,

LP, QP, SOCP, GP, SDP

– can work for feasible, but not strictly feasible problems

– still active research topic, but show great promise
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Modified KKT conditions and central points

• modified KKT conditions (for convex optimization in Definition 42) expressed as

rt(x, λ, ν) =

 ∇f(x) + Dq(x)Tλ + ATν

− diag(λ)f(x) − (1/t)1

Ax − b


where

dual residual − rdual(x, λ, ν) = ∇f(x) + Dq(x)
T
λ + A

T
ν

centrality residual − rcent(x, λ, ν) = − diag(λ)f(x) − (1/t)1

primal residual − rpri(x, λ, ν) = Ax − b

• if x, λ, ν satisfy rt(x, λ, ν) = 0 (and q(x) ≺ 0), then

– x = x∗(t), λ = λ∗(t), ν = ν∗(t)

– x is primal feasible and λ & ν are dual feasible with duality gap m/t
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Primal-dual search direction

• assume current (primal-dual) point y = (x, λ, ν) and Newton step ∆y =

(∆x,∆ν,∆λ)

• as before, linearize equation to obtain Newton step, i.e.,

rt(y + ∆y) ≈ rt(y) + Drt(y)∆y = 0 ⇔ ∆y = −Drt(y)
−1

rt(y)

hence ∇2f(x) +
∑

λi∇2qi(x) Dq(x)T AT

− diag(λ)Df(x) − diag(f(x)) 0

A 0 0

 ∆x

∆λ

∆ν

 = −

 rdual
rcent
rpri



• above equation determines primal-dual search direction ∆ypd = (∆xpd,∆λpd,∆νpd)
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Surrogate duality gap

• iterates x(k), λ(k), and ν(k) of primal-dual interior-point method are not necessarily

feasible

• hence, cannot easily evaluate duality gap η(k) as for barrier method

• define surrogate duality gap for q(x) ≺ 0 and λ ⪰ 0 as

η̂(x, λ) = −q(x)
T
λ

• η̂ would be duality gap if x were primal feasible and λ & ν were dual feasible

• value t corresponding to surrogate duality gap η̂ is m/η̂
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Primal-dual interior-point method

Algorithm 10. [primal-dual interior-point method]

Require: initial point x with q(x) ≺ 0, λ ≻ 0, µ > 1, ϵpri > 0, ϵdual > 0, ϵ > 0

repeat

set t := µm/η̂

computer primal-dual search direction ∆ypd = (∆xpd,∆λpd,∆νpd)

do line search to choose s > 0

update - x := x + s∆xpd, λ := λ + s∆νpd, ν := ν + s∆νpd

until ∥rpri(x, λ, ν)∥2 ≤ ϵpri, ∥rdual(x, λ, ν)∥2 ≤ ϵdual, η̂ ≤ ϵ

• common to choose small ϵpri, ϵdual, & ϵ since primal-dual method often shows faster

than linear convergence
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Line search for primal-dual interior-point method

• liner search is standard backtracking line search on r(x, λ, ν) similar to that in

Algorithm 7 except making sure that q(x) ≺ 0 and λ ≻ 0

• note initial s in Algorithm 11 is largest s that makes λ + s∆λpd positive

Algorithm 11. [backtracking line search for primal-dual interior-point method]

Require: ∆xpd, ∆λpd, ∆νpd, α ∈ (0.01, 0.1), β ∈ (0.3, 0.8)

s := 0.99 sup{s ∈ [0, 1]|λ + s∆λ ⪰ 0} = 0.99min{1,min{−λi/∆λi|∆λi <

0}}
while q(x + s∆xpd) ̸≺ 0 do

t := βt

end while

while ∥r(x + s∆xpd, λ + s∆λpd, ν + s∆νpd)∥2 > (1 − αs)∥r(x, λ, ν)∥2 do

t := βt

end while
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Selected proofs

• Proof 1. (Proof for “intersection of convex sets is convex set” on page 20)

Suppose C is a collection of convex sets. Suppose x, y ∈
⋂

C∈C C and 0 < θ < 1.

Then for each C ∈ C and θx + (1 − θ)y ∈ C, hence, θx + (1 − θ)y ∈
⋂

C∈C C,⋂
C∈C C is a convex set.

• Proof 2. (Proof for “theorem of alternative for linear strict generalized inequalities”

on page 30)

Suppose Ax ≺K b is infeasible. Then {b − Ax|x ∈ Rn} ∩ K◦ = ∅. Theorem 1

implies there exist nonzero λ ∈ Rn and c ∈ R such that

(∀x ∈ Rn
)
(
λ
T
(b − Ax) ≤ c

)
(1)

and (
∀y ∈ K

◦) (
λ
T
y ≥ c

)
. (2)

The former equation (1) implies λTA = 0 and λTb ≤ c. and the latter a ⪰K∗ 0.

If c > 0, there exists y ∈ K◦ such that λTy ≥ c > 0. Then λT ((c/2λTy)y) =
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c/2 < c, but (c/2λTy)y ∈ K◦, hence contradiction. Thus, c ≤ 0. If λTy < 0 for

some y ∈ K◦, then αy ∈ K◦ for any α > 0, thus there exists z ∈ K◦ which makes

λTz arbitrarily large toward −∞. Therefore λTy is nonnegative for every y ∈ K◦.

Then the latter equation (2) implies (∀y ∈ K◦)
(
λTy ≥ 0

)
, hence λ ∈ K∗ (by

Definition 26). Therefore we have

λ ̸= 0, λ ⪰K∗ 0, A
T
λ = 0, λ

T
b ≤ 0.

Conversely, assume that all of above are satisfied. Then for every x ∈ Rn, there exists

nonzero λ ⪰K∗ 0 such that

λ
T
(Ax) ≥ λ

T
b,

thus Proposition 3 implies Ax ̸≺K b.

• Proof 3. (Proof for “convexity of infimum of convex function” on page 42)
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Note

epi inf
y∈C

f(x, y) = {(x, t)|(∀ϵ > 0)(∃y ∈ C)(f(x, y) ≤ t + ϵ)}

=
⋂
n∈N

{(x, t) |(∃y ∈ C)(f(x, y, t + 1/n) ∈ epi f)}

=
⋂
n∈N

({(x, t) |(∃y ∈ C)(f(x, y, t) ∈ epi f)} − (0, 1/n))

where {(x, t) |(∃y ∈ C)(f(x, y, t) ∈ epi f)} − (0, 1/n) for each n since epi f is

convex and projection of a convex set is convex. Since the intersection of any collection

of convex sets is convex, epi infy∈C f(x, y) is convex, thus infy∈C f(x, y) is convex

function.

• Proof 4. (Proof for “Lagrange dual is lower bound for optimal value” on page 81)

For every λ ⪰ 0 and y ∈ F

g(λ, ν) ≤ f(y) + λ
T
q(y) + ν

T
h(y) ≤ f(y) ≤ inf

x∈F
f(x) = p

∗
.
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• Proof 5. (Proof for “max-min inequality” on page 121)

For every x ∈ X, y ∈ Y

f(x, y) ≤ sup
x′∈X

f(x
′
, y)

hence for every x ∈ X

inf
y′′∈Y

f(x, y
′′
) ≤ inf

y′∈Y
sup
x′∈X

f(x
′
, y

′
)

i.e., infy′∈Y supx′∈X f(x′, y′) is upper bound of infy′′∈Y f(x, y′′), hence

sup
x∈X

inf
y′′∈Y

f(x, y
′′
) ≤ inf

y′∈Y
sup
x′∈X

f(x
′
, y

′
)

• Proof 6. (Proof for “epigraph of convex optimization is convex” on page 134)

Assume (u1, v1, t1), (u2, v2, t2) ∈ H. Then there exist x1, x2 ∈ D such that

q(x1) ⪯ u1, h(x1) = v1, f(x1) ≤ t1, q(x2) ⪯ u2, h(x2) = v2, and f(x2) ≤ t2.
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Then for every 0 ≤ θ ≤ 1

q(θx1 + (1 − θ)x2) ⪯ θq(x1) + (1 − θ)q(x2) = θu1 + (1 − θ)u2

h(θx1 + (1 − θ)x2) = θh(x1) + (1 − θ)h(x2) = θv1 + (1 − θ)v2

f(θx1 + (1 − θ)x2) ⪯ θf(x1) + (1 − θ)f(x2) = θt1 + (1 − θ)t2

thus θ(u1, v1, t1) + (1 − θ)(u2, v2, t2) ∈ H, hence H is a convex set.
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backtracking line search for primal-dual interior-
point method, 241

barrier method, 231

boundary

set, 4

closure

set, 4

complement

set, 3

complementary slackness, 128
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conic programming, 74
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convergence analysis of Newton’s method, 185
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concordant functions, 197
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convexity of level sets, 38
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convexity preserving set operations, 20

definitions
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affine sets, 12

almost everywhere - a.e., 7
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descent methods, 178

determinant maximization problems, 77
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dual norms, 27
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epigraphs, 39
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generalized inequalities, 23

geometric programming, 71

global optimality, 54
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hyperplanes, 16

hypographs, 39

infinitely often - i.o., 7

iterative meethods, 178

iterative meethods with search directions, 178

KKT optimality conditions, 129

KKT optimality conditions for generalized
inequalities, 163

Lagrange dual functions, 81

Lagrange dual functions for generalized
inequalities, 158

Lagrange dual problems, 89

Lagrange dual problems for generalized
inequalities, 159

Lagrangian, 80

Lagrangian for generalized inequalities, 157

line search method, 179

line segmenets, 11

linear programming, 62

lines, 11

local optimality, 54

matrix convexity, 51

monomial functions, 71

Newton decrement, 195

norm ball, 18

norm cone, 18

optimal duality gap, 99

optimization problems, 53

optimization problems with generalized inequalities,
156

polyhedra, 19

posynomial functions, 71

proper cones, 23

quadratic programming, 66

quadratically constrained quadratic programming,
68
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relative boundaries of sets, 13

relative interiors of sets, 13

saddle-points, 122

second-order cone, 18

second-order cone programming, 69

self-concordance, 187

semidefinite programming, 75

separating hyperplanes, 25

strong duality, 100

strong max-min property, 121

sublevel sets, 38

superlevel sets, 38

supporting hyperplanes, 25

weak duality, 98

descent methods, 178

determinant maximization problems, 77

difference

set, 4

dual characterization of K-convexity, 50

dual cones, 26

dual norms, 27

ellipsoids, 17

epigraphs, 39

equivalent optimization problems, 55

Euclidean ball, 17

exact line search, 179

exact line search for infeasible Newton’s method,
217
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extended real-value extension of convex functions,
33

Farkas’ lemma, 154

Farkas, Julius

Farkas’ lemma, 154

feasible Newton’s method for equality constrained
minimization, 208

Fenchel’s inequality, 46

Fenchel, Moritz Werner

Fenchel’s inequality, 46

finite sequence, 3

first-order condition for convexity, 34

generalized inequalities, 23

geometric programming, 71

geometric programming in convex form, 72

global optimality, 54

gradient descent method, 180

graphs and convexity, 39

half spaces, 16

hyperplanes, 16

hypographs, 39

i.o.

infinitely often, 7

inequalities

Fenchel’s inequality, 46
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max-min inequality, 121

infeasible Newton’s method for equality constrained
minimization, 216

infinite sequence, 3

infinitely often, 7

infinitely often - i.o., 7

integer, 3

interior

set, 4

iterative meethods, 178

iterative meethods with search directions, 178

KKT and convexity sufficient for optimality with
strong duality, 132

KKT necessary for optimality with strong duality,
130

KKT optimality conditions, 129

KKT optimality conditions for generalized
inequalities, 163

Lagrange dual functions, 81

Lagrange dual functions for generalized inequalities,
158

Lagrange dual problems, 89

Lagrange dual problems for generalized inequalities,
159

Lagrange, Joseph-Louis

Lagrange dual functions, 81

Lagrange dual functions for generalized
inequalities, 158
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Lagrange dual problems, 89

Lagrange dual problems for generalized
inequalities, 159

Lagrangian, 80

Lagrangian for generalized inequalities, 157

Lagrangian, 80

Lagrangian for generalized inequalities, 157

Lagrangian for generalized inequalities, 157

line search method, 179

line segmenets, 11

linear programming, 62

lines, 11

local optimality, 54

local optimality implies global optimality, 58

matrix

positive definite, 5

positive semi-definite, 5

symmetric, 5

trace, 4

matrix convexity, 51

max-min inequality, 121

monomial functions, 71

natural number, 3

Newton decrement, 182, 195

for equality constrained problem, 207

Newton’s method, 183

Newton, Isaac

Newton decrement, 182, 195
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for equality constrained problem, 207

Newton’s method, 183

norm

vector, 4

norm ball, 18

norm cone, 18

number

complex number, 3

integer, 3

natural number, 3

rational number, 3

real number, 3

optimal duality gap, 99

optimality certificate for self-concordant functions,
195

optimality conditions for convex optimality
problems, 58

optimization problems, 53

optimization problems with generalized inequalities,
156

polyhedra, 19

positive definite matrix, 5

positive semi-definite matrix, 5

posynomial functions, 71

primal-dual interior-point method, 240

proper cones, 23

properties of dual cones, 28

propositions
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complementary slackness, 128

conjugate of conjugate, 46

convexity of level sets, 38

convexity preserving function operations, 40

convexity preserving set operations, 20

dual characterization of K-convexity, 50

geometric programming in convex form, 72

graphs and convexity, 39

properties of dual cones, 28

self-concordance for logarithms, 187

self-concordance preserving operations, 189

quadratic programming, 66

quadratically constrained quadratic programming,
68

rational number, 3

real number, 3

relative boundaries of sets, 13

relative interior

set, 4

relative interiors of sets, 13

saddle-points, 122

second-order condition for convexity, 35

second-order cone, 18

second-order cone programming, 69

self-concordance, 187

self-concordance for logarithms, 187

self-concordance preserving operations, 189
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semidefinite programming, 75

separating hyperplane theorem, 25

separating hyperplanes, 25

sequence, 3

finite sequence, 3

infinite sequence, 3

set

boundary, 4

closure, 4

complement, 3

difference, 4

interior, 4

relative interior, 4

Slater’s theorem, 101

Slater’s theorem for generalized inequalities, 160

smallest σ-algebra containing subsets, 4

strong alternatives for generalized inequalities, 168

strong alternatives of two systems, 150

strong alternatives of two systems with strict
inequalities, 151

strong duality, 100

strong max-min property, 121

sublevel sets, 38

superlevel sets, 38

supporting hyperplane theorem, 25

supporting hyperplanes, 25
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symmetric matrix, 5

theorem of alternative for linear strict generalized
inequalities, 30

theorems

convergence analysis of Newton’s method, 185

convergence analysis of Newton’s method for
self-concordant functions, 197

Farkas’ lemma, 154

first-order condition for convexity, 34

KKT and convexity sufficient for optimality with
strong duality, 132

KKT necessary for optimality with strong duality,
130

local optimality implies global optimality, 58

optimality certificate for self-concordant
functions, 195

optimality conditions for convex optimality
problems, 58

second-order condition for convexity, 35

separating hyperplane theorem, 25

Slater’s theorem, 101

Slater’s theorem for generalized inequalities, 160

strong alternatives for generalized inequalities,
168

strong alternatives of two systems, 150

strong alternatives of two systems with strict
inequalities, 151

supporting hyperplane theorem, 25

theorem of alternative for linear strict generalized
inequalities, 30

weak alternatives for generalized inequalities,
167

weak alternatives of two systems, 147

weak alternatives of two systems with strict
inequalities, 149
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trace

matrix, 4

vector

norm, 4

weak alternatives for generalized inequalities, 167

weak alternatives of two systems, 147

weak alternatives of two systems with strict
inequalities, 149

weak duality, 98

ZZ-figures

diagrams for containment of convex optimization
problems, 78

dual cone, 26

geometric interpretation of duality - 1, 113

geometric interpretation of duality - 2, 114

geometric interpretation of duality - 3, 116

geometric interpretation of duality - 4, 119

sensitivity analysis of optimal value, 135
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